

Uniform Pseudo-random Number Generation in *k* Dimensions using the ACORN Algorithm

Roy S Wikramaratna, RPS Energy

WikramaratnaR@rpsgroup.com

OCCAM, University of Oxford 20th April 2009

RPS Energy **Acknowledgements**

- Chris Farmer
 - Suggesting problem (1984)
 - Continuing interest in progress and results
- RPS Energy
 - Current employer
 - For giving me the time to visit today
- Numerical Algorithms Group Ltd, Oxford
 - For challenging me to provide more conclusive demonstrations of effectiveness of ACORN algorithm
 - Special thanks to Brian Ford, Martyn Byng at NAG

- Background
 - Why pseudo-random number generation
 - Desirable properties
 - Some alternative approaches to the problem
- ACORN algorithm
 - Specification; implementation; mathematical and numerical analysis
- Leading to the conclusion that ACORN algorithm is practical approach to uniform pseudo-random number generation
 - Easy to implement
 - Scales to any size of problem
 - uniformity in *k*-dimensions, any given *k*; period length in excess of any given number
 - Some very interesting analysis and useful mathematical results

RPS Energy **Some background**

- What is a *pseudo-random sequence* of numbers?
 - Sequence generated from specified algorithm and initial state
 - Algorithm chosen so that sequence appears random
 - Difficult to identify current state precisely without exact knowledge of the sequence
 - Small perturbations in current state make large difference to future evolution
- Many different mathematical and numerical problems whose numerical solution requires a reliable source of uniformly distributed (pseudo-)random numbers
 - Monte Carlo methods, with applications including
 - numerical integration
 - numerical optimisation
 - Bayesian inference
 - geostatistical simulation, statistical physics, other statistical applications
 - Games of chance (computer simulation of shuffling cards, dice, roulette wheels, etc)
 - Cryptography and related applications

RPS Energy *k*-distributed sequences - definitions

• A sequence (\mathbf{x}_n) is <u>well distributed modulo 1 in \Re^k </u> if uniformly in *p* and for all $[\mathbf{a}, \mathbf{b})$ contained in or equal to \mathfrak{Y}^k

$$\lim_{N \to \infty} \frac{A([a,b);N,p)}{N} = \prod_{j=1}^{k} (b_j - a_j)$$

- A([a,b);N,p) denotes number of points {x_{p+n}}, 1≤n<N that lie in [a,b) where {x} means fractional parts of x
- A sequence (x_n) is <u>uniformly distributed modulo 1 in R^k</u> if the above expression holds for p=0
- See Kuipers and Niederreiter, Uniform Distribution of Sequences

RPS Energy **Uniformly distributed,** *k* dimensions

• K&N, **Theorem 6.4**:

A sequence (x_n) is u.d. mod 1 in \mathbb{R}^k if and only if for every continuous complex-valued function *f* on \mathbb{J}^k the following relation holds:

$$\lim_{n\to\infty}\frac{1}{N}\sum_{n=1}^N f(\{\mathbf{x}_n\}) = \int_{\mathfrak{Y}^k} f(\mathbf{x})d\mathbf{x}$$

RPS Energy **Well distributed,** *k* dimensions

• K&N, <u>Theorem 6.4</u> generalises to

A sequence (x_n) is w.d. mod 1 in \Re^s if and only if, uniformly in *p* and for every continuous complexvalued function *f* on \Re^s , the following relation holds:

$$\lim_{n\to\infty}\frac{1}{N}\sum_{n=1+p}^{N+p}f(\{\mathbf{x}_n\}) = \int_{\mathfrak{Y}^s}f(\mathbf{x})d\mathbf{x}$$

RPS Energy **Condition for convergence of Monte-Carlo integration in** *k***-dimensions**

- A consequence of these Theorems is that having access to sequences that approximate to being w.d. mod 1 in k dimensions (or at the very least u.d. mod 1 in k dimensions) is a requirement for successful k-dimensional Monte-Carlo integration.
- This suggests that such sequences could be of enormous potential value.
- BUT, in practice, "uniformly distributed" pseudo-random sequences rarely give a good approximation to u.d. mod 1 in more than a small number of dimensions.
- To date, ACORN sequences are the only ones for which we can prove uniformity in *k* dimensions for any given value *k*

RPS Energy **Motivation (historical)**

- Circa 1984, at Winfrith (with Chris Farmer)
 - Developing numerical applications (in particular moving point methods for convection-diffusion problems) which required uniform 'random' distribution of points in 2D (and ultimately 3D) grid cells
 - Desire for independence from commercial software and freedom to run on any machine
 - Seeking method that was simple to implement as well as reliable
- Problems and pitfalls
 - Turned out to be a bit more complicated (and a whole lot more interesting) than it had seemed at first sight

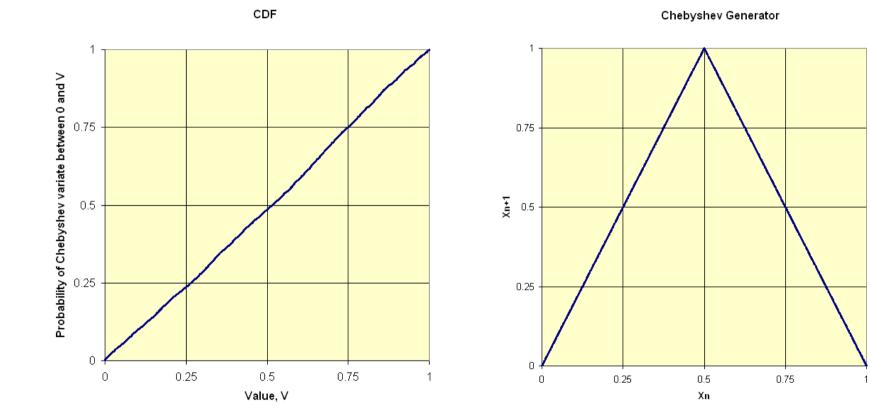
RPS Energy **A cautionary tale ...(1)**

• Chebshev mixing method (proposed by Erber, Everett and Johnson, *J. Comput. Phys.*, vol 32, p168 -, 1979)

 $Z_n = Z_{n-1}^2 - 2 \text{ where initial } Z_0 \text{ lies in the range}(0,2)$ $U_n = (1/\pi) \cos^{-1}(Z_n/2)$

- Superficially, appears a good source of U(0,1) numbers
 - Simple, easy to implement
- BUT turns out to have undesirable qualities, making it unsuitable as a source of random numbers
 - As later pointed out by Erber et al, J. Comput. Phys., 1983

RPS EnergyChebyshev generator – distributionin one and two dimensions



RPS Energy Analysis of Chebyshev algorithm

- Can rewrite Chebyshev generator as $U_{n} = (1/\pi)\cos^{-1}(Z_{n}/2) = (1/\pi)\cos^{-1}((Z_{n-1}^{2}-2)/2)$ $\cos(\pi U_{n}) = (Z_{n-1}^{2}-2)/2 = 2(Z_{n-1}/2)^{2} - 1$ $= 2\cos^{2}(\pi U_{n-1}) - 1 = \cos(2\pi U_{n-1})$
- Hence, simplifies to $U_n = 2U_{n-1}$ $U_{n-1} < 0.5$ $U_n = 2 - 2U_{n-1}$ $U_{n-1} \ge 0.5$
- Using exact finite precision arithmetic, with k binary digits, sequence collapses to zero after k steps
 - Only reason the generator 'works' at all is due to rounding error in inverse cosine calculation

RPS Energy **A cautionary tale ...(2)**

 Linear congruential generator, LCG (see discussion in Knuth, The Art of Computer Programming, Vol 2. Seminumerical algorithms)

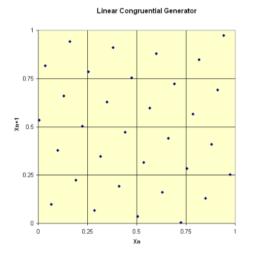
$$Y_n = (aY_{n-1} + c)_{\text{mod}M} \qquad X_n = Y_n / M$$

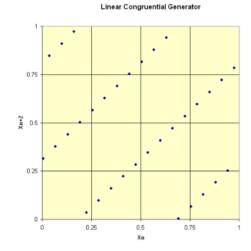
- Depends on appropriate choice of multiplier *a*, additive constant *c* and modulus *M*
 - For any given *M* only a very small proportion of choices of multiplier give good distribution properties
 - Extensive empirical testing required for each choice of M
 - Often restrict to generators with constant *c* = 0 (multiplicative congruential generator, MCG)
 - Period length always $\leq M$

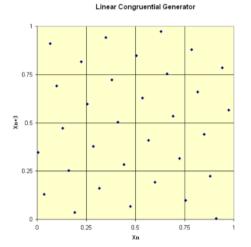
RPS Energy **MCG** issues (also apply to LCG)

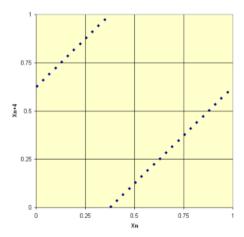
- With large *M* can get reasonable distribution properties in moderate number of dimensions and long period (but can only use a small fraction of full period)
 - Example: NAG routine G05CAF (modulus 2⁵⁹, multiplier 13¹³; period length 2⁵⁷, provided seed is odd)
- To increase period, require increased modulus plus extensive empirical testing of large numbers of multipliers
 - No a priori way of predicting good multipliers
- For parallel processing, need much longer sequences (very large modulus) or many different statistically independent generators
- With smaller *M*, serious inadequacies with distribution properties
 - Many historical examples (smaller modulus) that were widely used and later turned out to have disastrous flaws on certain problems
 - eg RANDU (modulus 2³¹, multiplier 65539, widely used in the scientific computing world for many years) but has very poor 3-d distribution
 - Might also have unforseen problems with current generators
 - Some examples follow

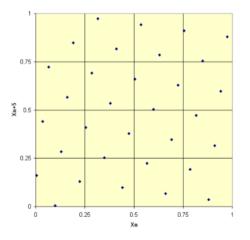
RPS Energy **MCG, modulus 2⁸=256, multiplier=137, initial value=1 (period=32)**

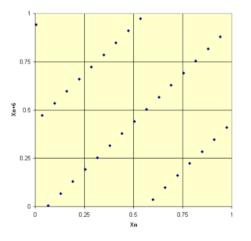










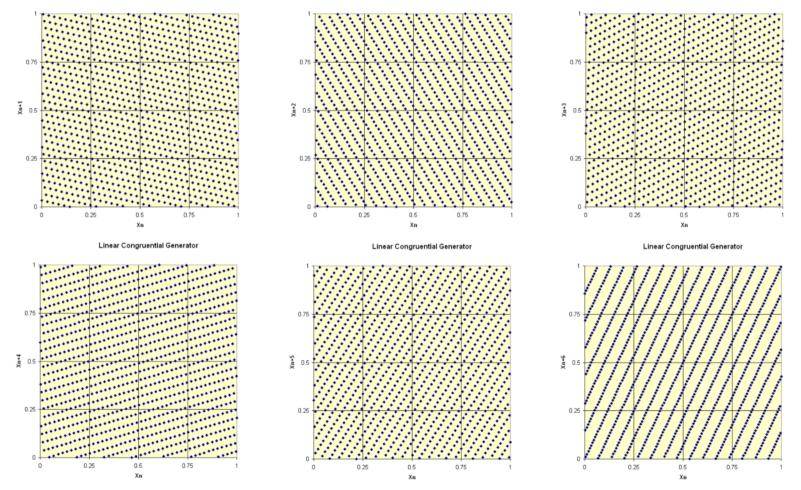


RPS Energy MCG, modulus 2¹²=4096, multiplier=141, i.v. =1 (period=1024)

Linear Congruential Generator

Linear Congruential Generator

Linear Congruential Generator



RPS Energy Additive congruential random number (ACORN) generator

- ACORN generator
 - Original discovery dates back to 1984/85
- Reference Wikramaratna, J. Comput. Phys., vol 83, p16-31 (1989) and follow up papers
 - Simple to implement
 - Long period ($\geq M$; multiple of the modulus)
 - Amenable to theoretical analysis
 - *k*-th order generator approximates to *k*-distributed
 - in the sense that it can approximate arbitrarily closely to any specified finite number of terms from a sequence that can be proved to be *k*-distributed

RPS Energy **ACORN random number generator**

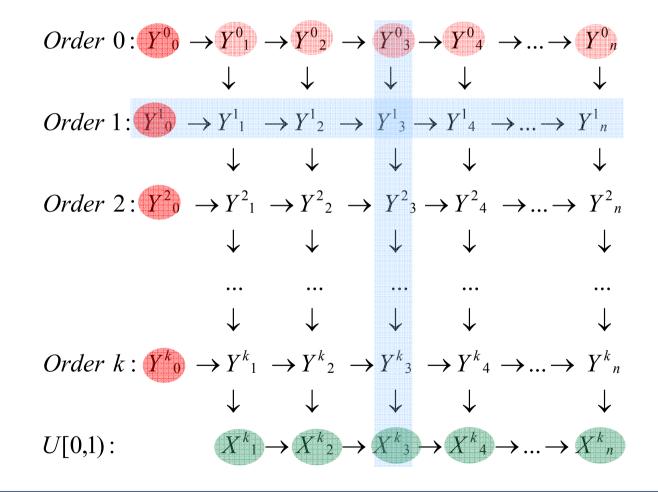
- *k*-th order ACORN generator defined from
 - an integer modulus M
 - an integer seed Y_0^0 , $(0 < Y_0^0 < M)$
 - an arbitrary set of *k* integer initial values Y_{0}^{m} , m = 1, ..., k, each satisfying $0 \le Y_{0}^{m} < M$

$$Y^{0}{}_{n} = Y^{0}{}_{n-1} \qquad n \ge 1$$

$$Y^{m}{}_{n} = (Y^{m-1}{}_{n} + Y^{m}{}_{n-1})_{\text{mod}M} \quad n \ge 1, m = 1, ..., k$$

$$X^{k}{}_{n} = Y^{k}{}_{n} / M \qquad n \ge 1$$

RPS Energy **Calculating ACORN variates**



RPS Energy **Some observations**

- Numbers X^k_n approximate to uniformly distributed on the unit interval in up to k dimensions
 - provided a few simple constraints on initial parameter values are satisfied,
 - C1. Modulus *M* should to be a large integer (typically a prime number raised to an integer power)
 - C2. Seed Y_0^0 and modulus should be relatively prime
 - C3. Initial values Y_0^m can then be chosen arbitrarily
 - Conditions C1 and C2 ensure a large period length (an integer multiple of the modulus).
- Suitable parameter combinations include
 - *M* a large prime; Y_0^0 any integer smaller than *M*
 - $M = Q^r$ for prime Q & some integer r; Y_0^0 integer, not a multiple of Q
 - $M = 2^{30p}$ for some (small) integer p; Y_0^0 an odd integer
 - this last choice is particularly convenient, both for efficient implementation and theoretical analysis

RPS Energy **Example implementations in FORTRAN 77, modulus 2³⁰ or 2⁶⁰**

С

С

С

С

DOUBLE PRECISION FUNCTION ACORNI (XDUM)

```
C
C ACORN GENERATOR
```

```
MODULUS = < 2^{30}, ORDER = < 12
```

C C

```
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
PARAMETER (MAXORD=12,MAXOP1=MAXORD+1)
COMMON /IACO/ KORDEI,MAXINT,IXV(MAXOP1)
DO 7 I=1,KORDEI
IXV(I+1)=(IXV(I+1)+IXV(I))
IF (IXV(I+1).GE.MAXINT)
```

```
1 IXV(I+1)=IXV(I+1)-MAXINT
```

```
7 CONTINUE
ACORNI=(DBLE(IXV(KORDEI+1))/MAXINT
RETURN
END
```

- XDUM dummy variable
- Common block IACO used to transfer data to the function
- Before first call, initialise variables in common block IACO (user must not subsequently change any of these parameters)
 - KORDEI Order ≤ 12 (higher orders possible by increasing parameter MAXORD)
 - MAXINT modulus for generator ($\leq 2^{30}$, to avoid integer overflow
 - IXV(1) seed for generator (seed non-zero and < MAXINT, relatively prime with MAXINT; if MAXINT = 2³⁰, then IXV(1) must be odd)
 - IXV(I+1), I=2,KORDEI initial values for generator (initial values< MAXINT)
- After initialisation, each call generates a single number between 0 and 1, returning it as the function value ACORNI.

```
DOUBLE PRECISION FUNCTION ACORNJ (XDUM)
       ACORN GENERATOR
       MODULUS =< 2^{60}, ORDER =< 12
  IMPLICIT DOUBLE PRECISION (A-H, O-Z)
  PARAMETER (MAXORD=12, MAXOP1=MAXORD+1)
  COMMON /IACO2/ KORDEJ
       , MAXJNT, IXV1 (MAXOP1), IXV2 (MAXOP1)
 1
  DO 7 I=1,KORDEJ
    IXV1(I+1) = (IXV1(I+1) + IXV1(I))
    IXV2(I+1) = (IXV2(I+1) + IXV2(I))
    IF (IXV2(I+1).GE.MAXJNT) THEN
      IXV2(I+1) = IXV2(I+1) - MAXJNT
      IXV1 (I+1) = IXV1 (I+1) +1
    ENDIF
  IF (IXV1(I+1).GE.MAXJNT)
 1
          IXV1(I+1) = IXV1(I+1) - MAXJNT
7 CONTINUE
  ACORNJ=(DBLE(IXV1(KORDEJ+1))
     +DBLE (IXV2 (KORDEJ+1)) /MAXJNT) /MAXJNT
 1
  RETURN
  END
```

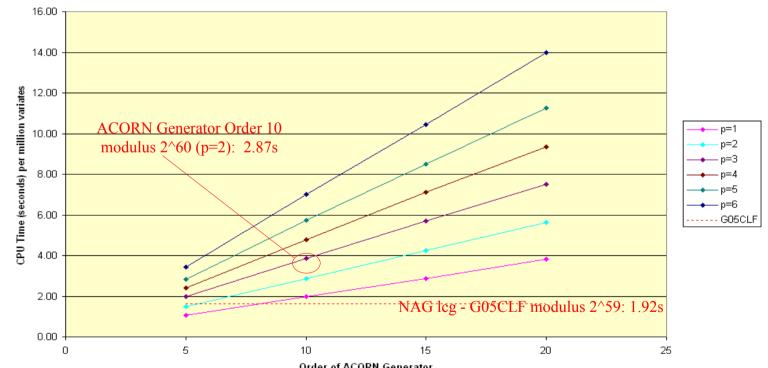
NOTE – This is simplest and most easily understood implementation; significantly faster implementations are possible (eg NAG Fortran Library, Mark 22) while still producing identical sequences for any specified implementation

RPS Energy **Computational performance (Martyn Byng, NAG, circa 2007)**

Time to exhaust period with single processor: ACORN modulus $2^{30} \sim 0.1$ to 0.8 days ACORN modulus $2^{60} \sim 0.3$ to 3.5 <u>million years</u>

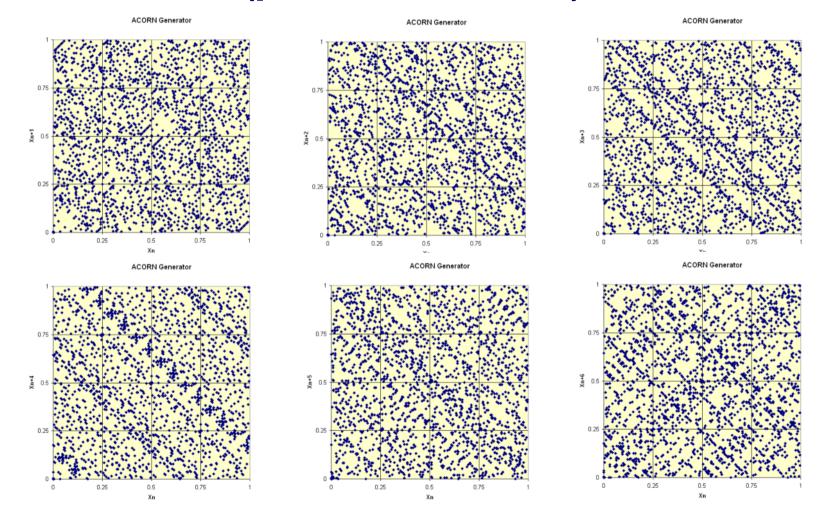
(Timings on:Windows 2000 Professional on Pentium III 600MHz processor with 128Mb memory using Compaq Visual Fortran 6 Compiler)

Timing Comparisons ACORN Generators (Modulus 2^30p, different p) and NAG LCG (G05CLF)

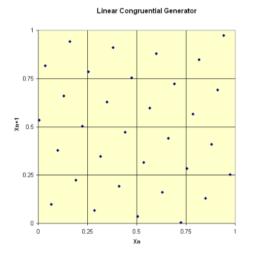


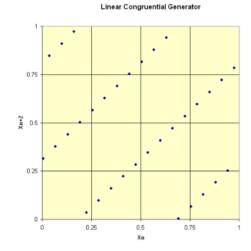
NOTE: improved implementation of ACORN in NAG Mark 22 library is $\sim 30\%$ faster (so ACORN Generator Order 10 modulus 2^60 (p=2) is comparable with G05CLF); Mersenne Twister implementation also gives comparable performance. Significant further speedup possible for all approaches by generating more than one variate per call.

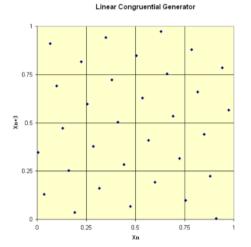
RPS EnergyACORN, modulus 28=256, order 8(period=8x256=2024)

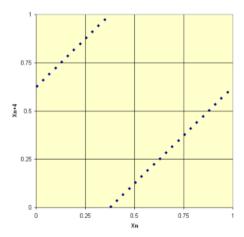


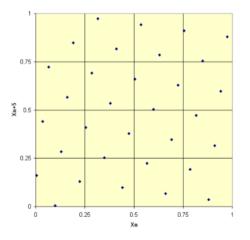
RPS Energy **MCG, modulus 2⁸=256, multiplier=137, initial value=1 (period=32)**

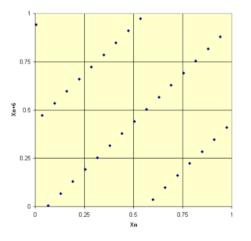




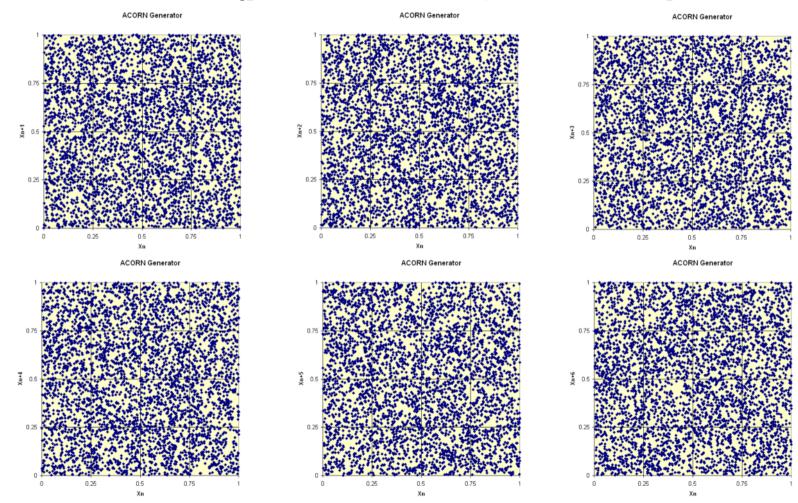








RPS EnergyACORN, modulus 212=4096, order 10
(period=8x4096; first 4096 points only)

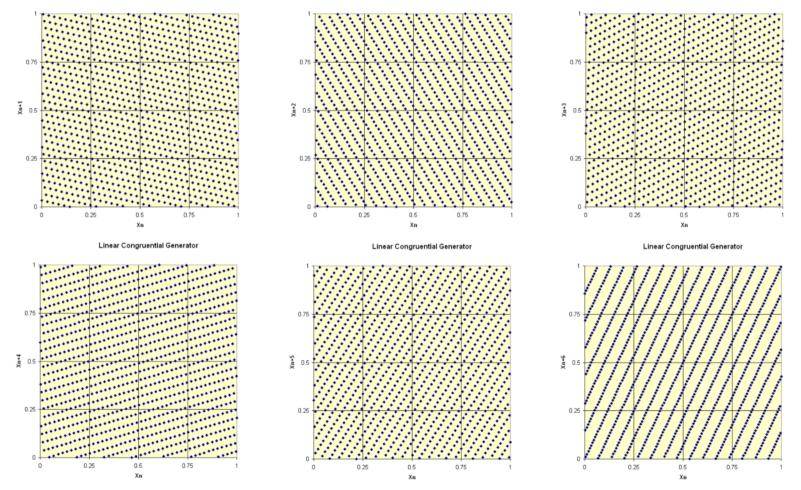


RPS Energy MCG, modulus 2¹²=4096, multiplier=141, i.v. =1 (period=1024)

Linear Congruential Generator

Linear Congruential Generator

Linear Congruential Generator



RPS EnergyEmpirical testing
(modulus ≥ 260, order ≥ 10)

- Computational Physics example, ~2000
 - Simulation of 2D Ising model, using cluster algorithms and in particular the Wolff algorithm [U. Wolff, Phys. Rev. Lett., 62, 361, 1989].
 - A.M. Ferrenberg, D.P. Landau and Y.J. Wong [Phys. Rev. Lett., 69, 3382, 1992] demonstrated that a number of supposedly 'high quality' random number generators produced systematically incorrect results on this problem.
 - M. Luscher [Computer Physics Communications, 79, 100, 1994] has suggested that this is a particularly sensitive test of random number generators.
 - Tests reported by Ferrenberg et al and by Luscher were repeated using ACORN algorithm as source of random numbers [U. Wolff, personal communication, 2000]. Discrepancy between simulation results and the exact analytic solution was statistically insignificant -ACORN generator passed this test (good LC generators also pass test)
- ~ 2005: using Diehard (Marsaglia, 1995)
 - See Wikramaratna, 2008a, submitted to JCAM
- ~ 2008: using TestU01 (L'Ecuyer and Simard, 2007)
 - See Wikramaratna, 2008b, submitted to JCAM

RPS Energy **Theoretical analysis and results**

- Main theoretical results to date
 - Closed form expression for *n*-th term
 - Periodicity (note larger than LCG with similar modulus)
 - Parallelisation of Monte-Carlo calculations
 - Equivalence between ACORN and certain specific multiple recursive and matrix generators
 - k-th order ACORN generator approximates to kdistributed

RPS EnergyClosed-form expression for *n*-th termin ACORN sequence

Define Z^m as follows

 $Z^{0}_{n} = 1 \qquad Z^{1}_{n} = n \qquad Z^{2}_{n} = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ $Z^{3}_{n} = \sum_{i=1}^{n} \frac{i(i+1)}{2} = \frac{n(n+1)(n+2)}{3!} \qquad \dots \qquad Z^{m}_{n} = \frac{(n+m-1)!}{(n-1)!m!}$

Leads to the following closed form expression for Y^m_n

 $Y^{m}{}_{n} = \left(\sum_{i=0}^{m} Y^{i}{}_{0}Z^{m-i}{}_{n}\right)_{\text{mod}M} \quad \text{where} \quad Z^{m-i}{}_{n} = \frac{(n+m-i-1)!}{(n-1)!(m-i)!}$

RPS Energy **Period length (1989)**

- Have proved that the period length of an ACORN sequence with modulus equal to a power of two will be an integer multiple of the modulus, provided only that the seed is chosen to be odd.
 - Period length of the sequence can be increased, effectively without limit, simply by increasing the value of the modulus by a suitable factor and then choosing the seed to take an odd value.
 - Implementation is straightforward, for arbitrarily large modulus
- Contrast with MCG/LCG for which the period length can never exceed the modulus
 - Increasing the modulus for a linear congruential generator is nontrivial as a result of need to identify appropriate new values of the parameters *a* and *c* in order to ensure reasonable distribution properties in higher dimensions
 - implementation of a linear congruential generator becomes progressively more complicated with increasing modulus.

RPS Energy **Conjecture (2008) on period length**

- Let X_n^k be a k-th order ACORN generator, with modulus equal to a prime power ($M = q^t$, where q is a prime) and suppose the seed and modulus are relatively prime. Then the sequence X_n^k , k = 1, ..., n will have period length equal to $q^iM = q^{i+t}$, where i is the largest integer such that $q^i \le k$.
- Observations
 - Seed and modulus relatively prime means seed should not be a multiple of *q*
 - If q = 2, then condition satisfied provided only that q takes odd value
 - Result holds irrespective of initial values
 - Restriction on seed is necessary (consider case with seed equal to *q* and all initial values zero first order generator has period *M/q*
- Examples (see also next slide)
 - Modulus 2^{60} , order 10 gives period 2^{63}
 - Modulus 2⁹⁰, order 16 gives period 2⁹⁴

RPS Energy **Period lengths for various moduli**

$M = 2^{t}$		$M = 3^t$		 $M = q^t, q$ prime	
Order <i>k</i>	Period	Order <i>k</i>	Period	Order <i>k</i>	Period
<i>k</i> =1	М	1≤ <i>k</i> <3	М	1≤ <i>k</i> <q< td=""><td>М</td></q<>	М
2≤ <i>k</i> <4	2 <i>M</i>	3≤ <i>k</i> <9	ЗМ	q≤k <q<sup>2</q<sup>	qМ
4 <i>≤k</i> <8	4 <i>M</i>	9≤k<27	9 <i>M</i>	<i>q</i> ² ≤ <i>k</i> < <i>q</i> ³	q ² M
••••				 	
2 ^{<i>i</i>} ≤ <i>k</i> <2 ^{<i>i</i>+1}	2 [′] M	3 [′] ≤k<3 ^{′+1}	3 [′] M	<i>qⁱ≤k<q<sup>i+1</q<sup></i>	q ⁱ M

RPS Energy **Parallelisation of Monte-Carlo calculations (2000)**

- Approaches to parallelisation
 - Parameterisation (define family of random number generators having a parameter that can be varied between different processors)
 - Success dependant on statistical independence of the different generators
 - Splitting (output from a single random number generator with long period is split into a number of sub-streams which can then be used either on different processors or for different realisations of the Monte-Carlo calculation)
 - If number of variates per realisation is known (or has a known bound) then can do identical calculation on any number p of processors with speed-up factor very close to p
 - Needs efficient algorithm to take large strides (fixed length) through the sequence of random numbers
 - 'Efficient' means much faster than stepping through the sequence term by term
 - Have demonstrated how to do this for ACORN
 - Need very long period length (sufficient to carry out full set of realisations)
 - Can always choose ACORN generator with sufficient period length

RPS Energy Energy **Equivalence with multiple recursive** generators (2008) ...

- Generalised MRG, order k: each variate is a linear combination of previous k variates and a constant
 - Normalise to the unit interval by dividing by M

$$y_j = (a_1 y_{j-1} + a_2 y_{j-2} + \dots + a_k y_{j-k} + c)_{\text{mod}M} \qquad x_j = y_j / M$$

- k-th order ACORN is equivalent to a k-th order generalised MRG with coefficients aⁱ, and c where
 - $-a_{j}^{i}$ alternate in sign; magnitude first increases, then decreases

$$a_{i} = \left((-1)^{i+1} \frac{k!}{(k-i)!i!} \right)_{\text{mod}M} \quad i = 1, \dots, k; \qquad c = Y^{0}_{0}$$

RPS Energy **2008**

Generalised MRG can be re-written

$$\begin{pmatrix} y_{j-k+1} \\ y_{j-k+2} \\ \vdots \\ y_{j-1} \\ y_j \end{pmatrix} = \begin{bmatrix} 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & \ddots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ a_k & a_{k-1} & \cdots & a_2 & a_1 \end{bmatrix} \begin{pmatrix} y_{j-k} \\ y_{j-k+1} \\ \vdots \\ y_{j-2} \\ y_{j-1} \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ c \end{bmatrix}_{\text{mod}M}$$

$$\mathbf{y}_j = \left(\mathbf{G}_k \mathbf{y}_{j-1} + \mathbf{c} \right)_{\text{mod}M}$$

$$\mathbf{y}_j = \left(\left[\mathbf{G}_k \right]^k \mathbf{y}_{j-k} + \left(\left[\mathbf{G}_k \right]^{k-1} + \dots + \left[\mathbf{G}_k \right]^1 + \left[\mathbf{I}_k \right] \right] \mathbf{c} \right)_{\text{mod}M}$$

$$= \left(\left[\mathbf{G}_k \right]^k \mathbf{y}_{j-k} + \left[\mathbf{B}_k \right] \mathbf{c} \right)_{\text{mod}M} = \left(\left[\mathbf{G}_k \right]^k \mathbf{y}_{j-k} + \mathbf{b}_k c \right)_{\text{mod}M}$$

- Apply k times gives matrix equation with <u>disjoint</u> vectors
- This is a particular case of a <u>matrix generator</u> (with matrix $[\mathbf{G}_k]^k$)
 - Can study the form of the matrices (G_k, [G_k]^k, B_k), vector b_k and the magnitude of the coefficients (see paper)
 - Observe in particular that $\mathbf{G}_{k}^{-1} = \mathbf{G}_{k}^{R}$ where ^R denotes reversing order of rows and columns (equivalently, rotating by 180° about mid-point of matrix)

RPS Energy *k*-distributed property (1992)

Normalised form of ACORN generator:

 $X^{n}_{n} = X^{n}_{n-1} \qquad n \ge 1$ $X^{m}_{n} = (X^{m-1}_{n} + X^{m}_{n-1})_{\text{mod}1} \qquad n \ge 1, m = 1, \dots, k$

- The *k*-th order ACORN random number generator (normalised to the unit interval) is well distributed modulo 1 in ^{Rk}, provided that the seed is irrational
 - Contrast with much weaker corresponding result for LCG can show that a normalised LCG can at best be uniformly distributed (but NOT well distributed) modulo 1 in [®], and is NOT uniformly distributed (or well distributed) modulo 1 in [®]/_k for any *k*>1
- Although any practical implementation uses rational seed, this suggests that with large enough modulus ACORN sequences can provide good approximation to *k*-distributed

RPS Energy *k*-distributed convergence (2008)

- Given an arbitrary k -th order ACORN sequence together with modulus M = 2^m and an appropriate set of initial conditions (including an odd value for the seed), together with a required precision b ≤ m; then the first M terms of the sequence are equal (to b binary digits precision) to the first M terms of an infinite sequence that is w.d. mod 1 in ℜ^k.
- Given any normalised *k* -th order ACORN sequence together with an appropriate set of initial conditions (in particular, with an irrational seed χ_0^0 – which ensures that the sequence is is w.d. mod 1 in \Re^k), then we can calculate the first $N = 2^{\nu}$ terms of the sequence to β binary digits accuracy from an ACORN sequence with appropriate values of the modulus, seed and initial values.
- These results formalise the notion that "with large enough modulus ACORN sequences can provide good approximation to kdistributed"
- Hence conclude that a *k*-th order ACORN generator will give good results for Monte-Carlo integration in *k* dimensions, for any *k*.

RPS Energy Where Next?

- Tremendous scope for further theoretical analysis of ACORN algorithm
 - Needs a concentrated effort to see how far theory can be developed
 - Limits on how fast it can be developed by one person working occasionally (or even obsessively) in spare time
 - Great opportunity to look at some very interesting applications of mathematics, and to make a real impact
- Numerical Algorithms Group have included ACORN generator in latest release of NAG subroutine libraries (Mark 22, 2009)
 - Focus for more extensive testing and use on wider range of real applications in the future
 - Comparison with other leading algorithms (eg Mersenne Twister, see Matsumoto and Nishimura, 1998)

RPS Energy **Some Research Opportunities**

- Does 'convergence' property for ACORN generators give a real practical benefit?
- Proof of conjecture on periodicity
- Conditions for $\mathbf{G}_k^{-1} = \mathbf{G}_k^{R}$ where ^R denotes reversing order of rows <u>and</u> columns; other properties of such matrices; do such matrices occur elsewhere
- More efficient implementations (but note already dominated by overhead from subroutine calls – so can already get very significant benefits from a program design that allows multiple variates to be generated in one call)
- Practical applications tests on real problems requiring random numbers; results comparison with other algorithms (in particular, the Mersenne Twister)

- ACORN algorithm appears to provide a practical source of k-distributed pseudo-random numbers for any k
 - Extremely simple to implement, in particular for modulus a power of 2
 - Period length a multiple of modulus (provided seed and modulus relatively prime) can be increased without limit
 - Identical sequences on any machine (to available machine precision)
 - Splitting approach allows parallelisation of Monte-Carlo calculations
- ACORN algorithm gives rise to some very interesting mathematical analysis that demonstrates a priori that the sequences will have the desired properties
 - Reduces the need for extensive empirical testing
 - Allows test of results by repeating calculations with a different (higher order, larger modulus) ACORN sequence and comparing results

RPS Energy **ACORN References**

- ACORN A New Method for Generating Sequences of Uniformly Distributed Pseudo-random Numbers, *J. Comput. Phys.*, **83** (1989) 16-31
- Theoretical Background for the ACORN Random Number Generator, Report AEA-APS-0244, AEA Technology, Winfrith, Dorset, UK (1992)
- Pseudo-random Number Generation for Parallel Processing A Splitting Approach, *SIAM News*, **33** number 9 (2000)
- The Additive Congruential Random Number Generator a Special Case of a Multiple Recursive Generator, *J. Comput. and Appl. Mathematics*, **216** (2008) 371-387 (doi: 10.1016/j.cam.2007.05.018)
- Empirical Testing of the Additive Congruential Random Number Generator, unpublished (submitted to *J. Comput. and Appl. Mathematics*, January 2008)
- Theoretical and Empirical Convergence Results for Additive Congruential Random Number Generators, unpublished (submitted to *J. Comput. and Appl. Mathematics*, July 2008)

