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Abstract

The ACORN (Additive Congruential Random Number) generators have been
proposed as a source of pseudo random numbers, uniformly distributed in the
unit interval. Their use has been justified by empirical testing of the resulting
sequences of numbers and demonstrated in practice by implementation in a
number of real applications. In this paper, we derive theoretical results which
prove that in a limiting case the k-th order ACORN sequences are well
distributed in k dimensions. This result is contrasted with the result for the
commonly used linear congruential generators, which in the corresponding
limiting case are uniformly distributed (a weaker result than well distributed) in
one dimension but are not uniformly distributed in any higher number of
dimensions. The paper concludes that the ACORN generators merit serious
consideration as an alternative source of pseudo random numbers in any
application which currently uses a linear congruential generator as well as in
those applications where linear congruential generators have proved inadequate
because of their poor distribution properties in higher dimensions.
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1 Introduction

Wikramaratna [1] has prbposed the ACORN (Additive Congruential Random
Number) generators as a source of uncorrelated random numbers which are
uniformly distributed in the urit interval. The k-th order ACORN generator can

be defined recursively from a seed XOO 0<X 00< 1) and an arbitrary set of k

initial values X™, m=1, .., k each satisfying 0< X™,< 1 by
X° = x° _, nz1 (1)

X" = X"+ X" D nzl,m=1,..,k (2)
where (X).,41 means the fractional part of X. Alternatively, using integer
arithmetic, it can be defined from a modulus M, a seed YOO.(O < Y00< M) and a set

of k initial values Y™, m=1, .., k each satisfying 0<Y™,< M by

Y% =19, n=1 (3)
ym = (Y’"'i,,+Y’"n_1)m(,M,, nz2l,m=1,....k (4)
X" =YY" IM nzl, m=1,... .k (5)

where M is a suitable large integer and where (Y)_, 4, means the remainder on

dividing ¥ by M. It is worth noting 'that, for the case where all the X ™, are
rational fractions, these two definitions are exactly equivalent (suppose, for
example, that X"y = N"™/D"™ m =0, .., k, where the N™and D™ are integers,

then choose M as the lowest common multiple of the D™, and let Y 7y = M X™,
m =0,..,k)

Either definition can be used successfully as the basis for an implementation of
the ACORN algorithm; the example listing in reference [1] was based on
equations (1) and (2), but it is a simple matter to modify this as in [2] to
implement (3) - (5). This algorithm has been implemented both for M =230 and

M =290 and the statistical tests from [1] applied to the resulting sequences of
numbers; the results obtained for the tests are very similar to those obtained with
the original implementation,” There are a number of practical advantages in
using the second definition in implementing the generator :

(i) At each stage all of the Y™ are calculated exactly, so that the values of the
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Ym, will be the same on any machine provided only that the seed, the initial
values and the modulus M are chosen to have the same values. The values of
X™ calculated from (5) may differ slightly due to variations in the machine

representations of real numbers, but these ditferences will only appear in the
least significant digits and there will be no cumulative buildup or growth of
these differences.

(i) By contrast, any small differences in machine representations of the seed
or initial values will grow rapidly in the algorithm defined by (1) and (2), so that
in general it will not be possible to generate the same sequences on different
machines, even with the ‘same’ seed and initial values. Wikramaratna [2] has
demonstrated how quickly such differences can grow. This fact does not
invalidate the use of the algorithm as a source of random numbers - although
the sequences may differ, they exhibit the same statistical properties - but if it
desirable to repeat a computation on a different machine with the same sequence
of random numbers, then the algorithm should be implemented using (3) - (5).

(iii)  The theoretical results concerning the periodicity which were proven in [1]
hold for the algorithm defined by (3) - (3). For the implementation of (1) and (2)
using floating point arithmetic, these theoretical results can give an order of
magnitude only, and no precise results exist (since the periodicity will depend on
the precision as well as on the particular implementation of floating point
arithmetic).

(iv)  The apparent limitation of M < 230 for an implementation in integer
arithmetic on a 32-bit machine can easily be overcome, by using 2 (or more)

words to represent each integer YY"  although this will obviously require more
computational effort. An implementation using p 32-bit integers to represent
each Y™ permits a choice of modulus up to a maximum of 23%, and it is thus

possible to generate arbitrarily long sequences by a suitable choice of p, while the
computational effort per term in the sequence is approximately proportional to
p- The algorithm can be implemented for example as a FORTRAN function
which generates a single random number in [0,1) at each call, requiring less than
twenty lines of FORTRAN code.

In this paper we present a theoretical analysis of the ACORN algorithm; this
analysis allows us to prove g priori results about the limiting behaviour of the k-
th order ACORN algorithm in particular relating to the uniformity of the
resulting distributions in k dimensions for any positive integer value of k. These
results are contrasted with the (much weaker) results which can be obtained for
the linear congruential generators in the corresponding limiting case. Our
results provide both a justification for the use of the ACORN algorithm as a
source of uniformly distributed pseudo random numbers and also an
explanation of some of our practical experiences in using the algorithm.
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2 Explicit Representation of Terms in the Sequences

The algorithm defined by (3) - (5) is very well suited to the computation of the

Yk . However it is useful in understanding the behaviour of the ACORN

generators to derive explicit representations for the Yk (and also for the Xk ) in
terms of the modulus, seed and the initial values.

Consider first the special case of the m -th order sequence where the seed is equal
to one and the initial values are all equal to zero. The resulting sequence of

numbers will be denoted by Z™,. Wikramaratna [2] made use of a standard result

’

% ...
S+ 1) ... (hmy= MO D it ) (6)
i=1 (m+2)
to rewrite equations (3) and (4) in this special case as
z° =1
Z' =n
Z 1) (n+ 1)
ZZ..t = = n(n+ =
2:1" 2 {n-—-1)121
m - i+ 1) ... ((+m=2 n+m—1)!
zn = 2 (i+1)... ( y_ ¢ ) 7

oy (m-1) (n—1)tm!

The equations (7) hold as long as the right hand side is smaller than M. Once it
exceeds this value, then the correct result is still obtained from (7) provided that
the value is taken modulo M. ‘

Making use of the additive nature of the ACORN generator, it is now
straightforward to show that for the general case of 0< YO;< M and 0<Y Jy< M , j

=1, ..., k the following equation holds for any positive integers k and 7, and for
any integer i 2 0.

k .
Y e = QY25 Dnoant : (8)
j=0

where the Z¥ 'fn are as defined by equation (7).
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Applying a similar analysis to the sequence defined by equations (1) and (2) leads
to an analogous equation which defines the X*, for the general case of 0 < X0 <1

and 0<XJy<1,j=1,.. k. Thus

k
X pn = O X2 oar 9)
Jj=0 :
3 Theoretical Results

In this section we will start by outlining some basic definitions and standard
results. We will then prove some fundamental theoretical results in 3.2 and 3.3
which we can apply to the sequences defined by equations (1) and (2) in the

limiting case where the seed XOG is irrational.

3.1 Background

We follow the notation and basic definitions of Kuipers and Niederreiter [3]. Let
R represent the real line and £ the set of integers. For x and y in R, let <x,y> be
the standard inner product. Let k be an integer; let a = (ay, ..., ap)and b=(by, ..., b.)

be two vectors with real components, thus a, be R¥. We say thata< b (a <b) if a;

< bj (aj < b]-) for j =1,2, ..., k. The set of points x € R* such that a<x<b will be
denoted by [a, b). The k-dimensional unit cube I* is the interval [0, 1) where 0 =
(0,..,0and 1 =(1, ...,.1). The integral part of x = (xy, ..., x)is Xl =xq], ..., [x,]) and
the fractional part of x is {x} = ({x4}, o, (D). Let(x), n =1, 2, ..., be a sequence of
vectors in R*. For a subset F of %, let A(E; N) denote the number of points {x,}, 1
<n £N, that lie in E; let A(E; N, p) denote the number of points {xpw}, 1<n< N,
that lie in E. Finaily, the difference operator A™ which operates on a sequence (x,)

. . : _ - My — w1,
is defined recursively by Ax, =x, ;- x, and A”x = A(A x,) for 2 2.

DEFINITION 1. The séquence (x,),n=1,2, .., is said to be urszormfy distributed
mod 1 in BF (ud. mod 1 in RK) if, for all intervals [a, b) contained in or equal to
Ik, we have

A(la,b):;N £
m_(["’_N)___l; 1% -a) (10)

N .
i=1
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The formal definition is due to Weyl [4, 5], who proved the following theorem
which gives a neccesary and sufficient condition for a sequence to be u.d. mod 1.

THEOREM 1: Weyl Criterion. A sequence (x,),n =1,2, .., is ud. mod 1in R if
and only if for every lattice point h € 25, h = 0,

2mich,Xn>
N—)o-oNZe (11)

This is a standard result, which we will not prove in this paper. Weyl’s original
proof [4, 5] is reproduced by Kuipers and Niederreiter [3].

A special case of u.d. mod 1, which is known as w.d. mod 1, was defined by
Hlawka [6] and Petersen [7]; the corresponding Weyl criterion (theorem 2), which
we once again quote without proof, was also proved by these authors.

DEFINITION 2. The sequence (x,), n =1,2, .., is said to be well distributed mod

Tin R¥ Gud. mod 1 in BX) if, umformly in p and for all intervals [a, b) contained
in or equal to/X, we have

k
lim M H(bwa, (12)

N oo

THEOREM 2: Weyl Criterion. A sequence (x,), n =1, 2, ..., is w.d. mod 1 in RF if

and only if for every lattice point h e Z, hzo,

i p+N )
flml 2 2 e2m<h Xa> () (13)
N w3 00 nep+l

uniformly in p.

Finally, we quote two other standard results which gives a sufficient condition
(but not a neccesary condition) for a sequence to be respectively u.d. mod 1 in &
and w.d. mod 1 in R; theorem 3 was due to Van der Corput [8] and a proof can
also be found in Kuipers and Niederreiter {3]; theorem 4 was due to Korobov and
Postnikov [9] and is in fact a special case of a subsequent more general result, due
to Hlawka [6], which is also proved in [3].

THEOREM 3: Van der Corput’s Difference Theorem. Let(x), n=1,2, ., bea
given sequence of real numbers. If for every positive integer i the sequence

Ky - %k n=1,2, .., s ud mod 1in R, then (x,) is u.d. mod 1 in R,

6
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THEOREM 4. lLet (x,),n=1,2.,bea given sequence of real numbers. If for
every positive integer & the sequence (Xpep -%,n=1,2, .., s wd mod 1in R,
then (x,) is w.d. mod 1 in R.

Note added in%oﬁ The two theorems 5 and 6 which follow in sections 3.2 and
3.3 are the main results which are proved in this paper. It has been drawn to the
author’s attention that they are in fact special cases of some classical results on

the uniform distribution of sequences. We observe that for fixed k the x kn
defined in theorem 5 is a polynomial function of n of degree k with irrational
leading coefficient (x%/k!). Thus, theorem 5 is a special case of the results of

Hlawka [10} and Lawton [11] which show that such sequences of polynomial
values are well distributed modulo 1. Similarly, theorem 6 is a special case of an
analogous result due to Cigler [12].

3.2 Uniformity in One Dimension

THEOREM 5. If a sequence (xk n), n =1, 2, .., has the property that

k
.l’kn = Exj()zkmj,, (E4)

j=0
for some positive integer k, where xUU is an irrational number, then the sequence

xkyn=1,2 ., iswdmodlin k.
H

PROOE. The proof is by induction on k. We first show that the theorem holds
for k = 1: this follows from the Weyl criterion for w.d. mod 1 and the inequality

R T L & rihion® oxls 2mipned
= Z eth(nx a+xg) = z eth(px 0+ X u)€2m.‘mx (o
N n=p-+jl N =]
: o
1 N _— @2mhNx’ _ g 1
-1 Z elmhnx o — < (15)
N =3 N le2minx% 1| = N |sin mhxo, |

for x9; irrational and for each integer h=0.
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Supwpose now that the theorem holds for 1, 2, ..., k-1. Then

= Z(x"h"xjo)zk’ _Z[Z(x 0Z! Y= xlg1Z%
= j=0 i=
k
zE I Z* i = Z wloZ 1, (16)
j=0

whesre £ Jy represents the term in square brackets and yJ, = £ F1, for each j; in

particular we observe that £0y =0and ¢ 1y = w9 =k 20, But the extreme right

hand term in equation (16) is w.d. mod 1 in R by the induction hypothesis, and
hence the theorem is true for k. R

3.3 Uniformity in & Dimensions

THEOREM 6. If a sequence (xkn), n=1,2,..1s as defined by equation (14) and if
we clefine the vector xk, e RE by xk =k ok . ., xk . 1), then the sequence
(xk D,n=1,2,.,is wd. mod 1 in R¥.

PROOF. Observe first that

k
xknﬂ' = zxjizknjn (17)

If hx = (hko ,h"‘i Y e, hkk_l) is an arbitrary non-zero vector in Z%, then

,>= Zh L(}:xj Zk )= Z(Z AR VAR an zZ, (18

f=0 =0

where
i k=1 ) k~1 J . . J k=1 )
Mo=(Y W)= 2 QO x5z =Y h. 2 ) (19)
i=0 i=0 tw () I=0i=0

For each choice of h* = 0,



Thees xetical Background for the ACORN Random Number Generator AEA-APS-0244

7% =x% Y h%
i=0.
k~1 k=1
%0 =x% ;;; ink 4 x! _Zah",
J k=1 o0+ L ‘
: i+ D+ j=1—
gjo " ; xlg Z ( Yoo (i) 1)}21;" 20)

0 i=p G-Dn!

At leeast one of the 7 fo .j=0,1, .., (k-1) must be non-zero (for suppose that they

are a ll zero, this implies that the hki must satisfy the k independant constraint
equa tions

k—1
lé)fz*ng”’;=0 j=0, .. k-1 ' | @D

and this has only the trivial solution which we excluded). Suppose therefore
that )y =0,j=0,1,..,m-1 <k and n My # 0. Then we require

k=1 +,: .

, L+ 1) ((+m-1

n" =x% Z G+ 1. G+m )h",- #0 (22)
=0 m!

Therefore 1™ is irrational (since xoO is irrational) and if we write rpr =17 ,r'+mo j=
0, ..., (k-m), then ¢k"”‘n satisfies the conditions of Theorem 5 and so ok M is wd
mod 1 in B . By theorem 2, with k =1

{ —— E T _m" fod '

uniformly in p for all & € Z, and in particular for h = 1. By construction therefore

1 PN "
. §: mi<h®:x% >
Nllln N_ N ¢ = ( . (24)

uniformly in p. But the above argument holds for every choice of h* = 0, and so
the sequence x*, is is w.d. mod 1 in Rk by theorem 2. |

9
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We will now prove two corollaries to the above theorem, both of which give
sufficient conditions for a sequence to be w.d. mod 1 in B¥. A special case of
corollary 1 (for the case of k = 1,with the somewhat weaker restriction that Alx,)
should tend in the limit of large n to §, and the correspondingly weaker result of
u.d. mod 1 in R), due to Van der Corput [8], is discussed together with other
existing difference theorems by Kuipers and Niederreiter [3]. Corollary 2 shows

that the k-th order ACORN generators also satisfy the conditions of the theorem
/(—p-zzovided only that the seed is irrational) and so in this case the k-th order

ACORN generators are w.d. mod 1 in R¥.
COROLLARY 1. If a sequence (x,), n =1, 2, ... has the property that

A*(,)= 6 (25)
for some positive integer k, where §is an irrational number, and if we define the
vector x, & RS by x,, = (x,, x
mod 1 in RE,

nels s Xpek-1) then the sequence (x,),n=1,2, .., is w.d.

PROOE If (x,) satisfies equation (25) then it can be written in the form of

equation (14) with x UO = § and some set of constants x I, j=1,.., k. Hence the

conditions of theorem 6 are satisfied and the corollary follows immediately from
the theorem. o '

COROLLARY 2. The k-th order ACORN sequence defined by equation (9) is w.d.
mod 1 in RX, provided only that the seed X{}() is irrational.

PROOF. Setx/y =X, j=0,.., k. Then XJ, =(x))

alln =0, 1, 2, ...; since (x f”) satisfies the conditions of the theorem, both the

mod 1 for each j =0, ..., k and for

sequences (x/,) and (X/,) are w.d. mod 1 in B, n

4 Corresponding Results for Linear Congruential Generators

Among the most widely used generators in common use today are the linear
congruential generators (Knuth [13], Ripley [14], Anderson [15]). These generators
can be defined by

U, = (aU,,_l + Chnod 1 nz1 (26)

where 0 < Up<1,0sc<T1anda>0is an integer, or alternatively by

10
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Va = (@Y1 + Do nt nzl ' . (27)

Uy =V, /M n2l (28)

where a is as before and Vjand d are integers, 0 < Vo< Mand 0<d < 1. We note

that, as in the case of the ACORN generators, the two definitions are equivalent
in the case where U o and c are both rational fractions.

The special case ¢ = 0, proposed originally by Lehmer [16] is generally known as
the multiplicative congruential generator. The more general case of non-zero c,
which is due independantly to Thompson {17] and Rotenberg [18] is often called
the mixed congruential generator. Linear congruential generators, and the very
extensive literature concerning them, are discussed in some detail in the books
by Knuth [13], Ripley [14] and in the review paper by Anderson[15].

As in the case of the ACORN generators, the definition in (27) and (28) is most
useful from the point of view of a practical implementation, but (26) forms a
useful starting point for a theoretical analysis of distribution properties. We

observe immediately that the sequence U% , n =1, 2, ... (where Ukn means the k-

74

tuple (U, U, q, ..U, P ) is not u.d. mod 1 in R¥ for any k > 1. Suppose for
example that k =2, and leta; =g a,=¢ - ¢ by =3¢ by =c + e(where £ =1/ 4a); then
A([a, b}, N) = 0 for every N, but (by-a)(by-a,) =4 e2 =1/ 402 0. Itisin fact
possible to show that the sequence U,n=12 . isud modlinR (although it is

not w.d. mod 1 in R) provided that the seed is irrational. This contrasts with the
much stronger result which has been proved in Corollary 2 and Theorem 6
above for the ACORN generators.

The set of points Ukn generated in k-dimensional space actually fall on a lattice

structure; a desirable property (which gives some approximation to uniformity in
higher dimensions) is that the lattice spacing should be of a similar size in ,
different directions. The spectral test (Coveyou and Macpherson [19]) is a
theoretical test which characterises the lattice structure (and in particular the
lattice spacing in different directions) for any particular linear congruential
generator, taken over its entire period. By applying the spectral test to a range of
generators with different choices of modulus, multiplier and additive constant it
is possible to identify generators which have reasonable distribution properties in
different numbers of dimensions (as well as the much larger numbers of
generators which suffer from very poor distribution properties). Fishman and

Moore [20] examined all possible multipliers for the modulus (23! - 1) (several
hundreds of millions in all) and came up with a few hundred multipliers giving
what they considered to be a reasonable lattice structure in up to about six
dimensions. Subsequent work by Fishman [21] looked in detail at two other

values of the modulus; for the case of modulus 232 he performed an exhaustive
search of all possible multipliers) and for the case of modulus

11
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248 he examined more than 67 million of the possible multipliers.

The spectral test provides a means of selecting those particular linear
congruential generators which have adequate distribution properties in up to
about six dimensions; however for larger numbers of dimensions the
computational effort required to perform the spectral test for a large enough
sample of multipliers becomes prohibitive. Further, if a sequence with better
distribution properties or a longer period length is subsequently required, there is
no alternative but to continue the search (for example, using a larger value of the
modulus). Finally, the spectral test gives results which pertain only to the full
period; they say nothing about the distribution properties for shorter
subsequences.

5 Practical Implications for ACORN Sequences

Anderson {15] has reviewed the literature on the linear congruential generators
and various other commonly used generators (shift register generators, Laﬁeﬁ—
Fibonacci generators, randomisation by shuffling, combination generators) and
concludes that in spite of their drawbacks linear congruential generators are the
preferred method in many applications, although they are not acceptable for
higher dimensional work. He also makes some tentative suggestions concerning
the use of lagged-Fibonacci and shift register generators as an alternative for
applications requiring uniformity in higher dimensions, but makes no clear
recommendation concerning the best approach. It should be noted that
Anderson’s review predated the publication of the ACORN algorithm.

Although the ACORN generators have been used in practice in geostatistical.
applications (for example Farmer [22], Parish et al [23], Deutsch and Journel {24]),
there has not previously been any rigorous theoretical justification for their use,
but only the results of empirical testing and intuitive arguments based on their
observed behaviour.

The results presented in this paper have demonstrated the theoretical superiority
of the ACORN generators over the linear congruential generators. When these
results are taken together with other results which have previously been derived
by Wikramaratna [1, 2], they provide a very strong argument for using the
ACORN generators in preference to the linear congruential generators in any
application.

In [1] and [2] we demonstrated the simplicity of implementing the ACORN
generators. The implementation can be simply extended to allow arbitrarily large
values of the modulus. OQur experience [1] has shown that the execution times
for the ACORN generators are comparable with those for carefully implemented
linear congruential generators.

Theoretical results derived in [1] showed that the period length for the ACORN
12
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generators with a given modulus are an integer multiple of the modulus
(provided the seed and modulus are relatively prime); the corresponding period
length for a linear congruential generator can never exceed the modulus.

Where a longer period length is required, one can simply increase the modulus
for the ACORN generators; the theoretical results proven here ensure that the
resulting sequence will have good distribution properties in up to k dimensions
(where k is the order of the generator being used). Indeed, by increasing the
modulus one approaches even closer to the limiting case of irrational seed for
which the theoretical results hold. By contrast, in the case of the linear
congruential generators, any change of the modulus requires a computationally
expensive search of a large number of multipliers in order to identify those
multipliers which give reasonable distribution properties in more than one
dimension.

Where uniformity in higher dimensions is required this can be obtained with
the ACORN generators simply by increasing the order of the generator to an
appropriate value, and if neccesary also increasing the modulus of the generator.
For the linear congruential generators it becomes prohibitively expensive to test
the distribution properties in higher dimensions using the spectral test for even a
single multiplier and in practice it is difficult to perform the exhaustive testing of
multipliers which is required to discover those genegz/tors which perform
adequately in more than about six dimensions.

6 Conclusions

In this paper we have proved that, in the limiting case of an irrational seed, the
k-th order ACORN generator is w.d. mod 1in &%, In a practical implementation,
with rational seed, we can approximate the first N terms of such a k-distributed
sequence arbitrarily closely by choosing a sufficiently large value for the modulus

and the appropriate approximation for the seed. In practice a modulus of 260 and
order k 2 10 appears to give adequate distribution properties and sufficiently long
period for most realistic applications today; if improved hardware performance .
results in a need for even longer sequences the algorithm can be very easily
modified to use a larger modulus (say 20 or 2129) giving a corresponding increase
in the period. The use of a larger modulus can also be expected to result in better
distribution properties because of approaching the limiting case more closely.

The results which have been demonstrated for the ACORN generators have been
contrasted with those which are obtained for the linear congruential generators:
in the corresponding limiting case they are u.d. mod 1 (but not w.d. mod 1) in &
and they are not u.d. mod 1 in R* forany k> 1. A consequence of this is that in
order to obtain reasonable distribution properties in more than one dimension
only a minute proportion of the possible combinations of modulus and
multiplier can be used. For some commonly used values of the modulus (for

example (231-1), 232 or 248) extensive searches (exhaustive in the first two cases)

13
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over possible multipliers have led to some hundreds of generators which have
reasonable distribution properties in up to about six dimensions. Unfortunately,
if a linear congruential generator with a longer period length is required (and
therefore a larger modulus is selected) the computationally intensive evaluation
of all the possible multipliers must be repeated for the new modulus, and a
correspondingly larger number of multipliers must be evaluated each time.

The theoretical results presented in this paper suggest that there are good reasons
for preferring the ACORN generators to the commonly-used linear congruential
generators as a source of uniformly distributed pseudo-random numbers. We
believe that the ACORN generators should be seriously considered as an
alternative in any application which currently uses a linear congruential
generator. The ACORN generators may also be a suitable -alternative in
applications where the linear congruential generators have proved inadequate
(in particular those requiring good distribution properties in higher numbers of
dimensions) and where other more complicated generators are currently used.

Our experience suggests that a 10-th (or higher) order ACORN generator with
modulus M = 260, an odd seed X 0y chosen such that X 0;/M lies in the

approximate range [0.001,0.1] and an arbitrary set of initial values gives a
sequence which will prove adequate for most applications. Note that these
conditions provide a useful rule of thumb in choosing a suitable generator; we
emphasise that they are not in any sense a requirement.

The performance results which were obtained in [1] suggested that the execution
times for the ACORN generators are comparable with those for carefully
implemented linear congruential generators. Our subsequent experience with
implementations in integer arithmetic support this conclusion. The question of
efficient implementation of the ACORN algorithm for use on vector and parallel
hardware will be addressed in a separate paper.

We believe that the results proven in this paper can be developed further,

leading eventually to quantitative discrepancy estimates for particular choices of
seed, order and modulus. This is the subject of current research.
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