TN
Unclassified
PRTD(90)R62

THEORETICAL ANALYSYS OF THE ACORN

RANDOM NUMBER GENERATOR

ROY S WIKRAMARATNA

(Paper presented at the SIAM Conference on Applied Probability in
Science and Engineering, New Orleans, Louisiana, March 5-7 1990)

Petroleum Reservoir Technology Division
Winfrith Petroleum Technology
Dorchester

Dorset DT2 8DH

United Kingdom

March 1990

Short Title: Analysis of ACORN Generator

(i)

CONTENTS PAGE

ABSTRACT (iid)
1. INTRODUCTION . 1
2. EXPLICIT REPRESENTATION OF YW, 4
3. DIVERGENCE OF NEIGHBOURING ORBITS 6
4. GROWTH OF ROUNDING ERRORS 9
5. CONCLUSIONS 12
6. REFERENCES 13
FIGURES

1. Fortran implementation of the ACORN
generator in integer arithmetic.

2. Graph showing z™, plotted against n
for values of m between 1 and 10.

3. Graph showing
(a) observed growth of rounding errors 6p and (1-8p)
(b) theoretical growth of rounding errors
(c) ratio of actual error to theoretical error
for the 10th order ACORN generator 1mp1emented
in single precision real arithmetic
TABLES

I Lower and upper bounds for np and exact values of np
calculated for a series of values of m and M.

(ii)

ABSTRACT

The ACORN (additive congruential random number) éenerator has been
proposed by Wikramaratna (J.Comput. Phys., 83(1)16-31, 1989) as a
source of uniformly distributed pseudo-random numbers. The k-th
order ACORN generator is defined recursively from a seed and k
initial values, leading to an algorithm which is extremely simple
to implement. Further advantages of the algorithm include long

period length and speed of execution.

In this wofk we investigate the theoretical background for the
ACORN generators and present some preliminary results of this
investigation. We derive explicit representations for the terms
in the ACORN sequences and show how this representation can be
used to model the divergence of neighbouring orbits resulting from
small perturbations in either the seed or the initial values. We
use this model to illustrate the benefits of coding the algorithm
in integer arithmetic modulo M rather than in reai:arithmetic

modulo 1.

1. INTRODUCTION

In a recent paper, Wikramaratna [1] proposed the ACORN (Additive
Congruential Random Number) generators as a source of uncorrelated
random numbers uniformly distributed in thé unit interval. The
k-th order ACORN generator is defined recursively from a seed

%0p (0 < X03 < 1) and a set of k initial values XMy, m =1, ..., k

each satisfying 0 < XMy < 1 by:

v
}.J

X0, = x%,.4 n (1)

XMy o= (X™1p + X _o1)mod 1 nzl m=1, ... k (2)

where (X)poq 1 means the fractional part of X. Alternatively,
using integer arithmetic, it can be defined from a modulus M, a
seed Y05 (0 < ¥0, < M) and initial values My, m=1, ..., k

satisfying 0 £ Yy < M by:

¥O0, = ¥0, 4 nzl (3)
¥ln = (Y0 + Y™ 1)med M nz2i, m=1, ..., k (4)
XB = yM /M m=1, ..., k (5)

where M is a suitable large integer and where (Y)pog M means the
remainder on dividing Y by M. It is worth noting that, for the

case where all the Xio are rational fractions, the two definitions

are exactly equivalent (suppose that Xio = Ni/Di, i=0,...,m where
the N1 and Di are integers, then choose M as the lowest common

multiple of the DI, and let viy = Mxiy).

Either definition can be used successfully as the basis for an
implementation of the ACORN algorithm; the example listing in
reference [1] was based on equations (1) and (2), but it is a
simple matter to modify this to implement equations (3)-(5), as in
the example given in Figure 1. This algorithm has been
implemented for M = 230, and the statistical tests from [1]
applied to the resulting sequences of numbers; the results
obtained for the tests are very similar to those obtained with the
original implementation. There are a number of practical
advantages in using the second definition in implementing the

generator:

(1) At each stage all of the YM, are calculated exactly, so
that the values of YU, will be the same on any machine
provided only that the seed, the initial values and the
modulus M are chosen to have the same values. The
values of XM, calculated from (5) may differ slightly
due to variations in the machine representations of
real numbers, but these differences will only appear in
the least significant digits and there will be no

cumulative buildup or growth of these differences.

(i1)

(iii)

(iv)

By contrast, any small differences in machine
representations of the seed or initial values will grow
rapidly in the algorithm defined by (1) and (2), so
that in general it will not be possible to generate the
same seguences on different machines, even with the
'same' seed and initial values. We will demonstrate
below how quickly such differences can grow. This fact
does not invalidate the use of the algorithm as a
source of random numbers - although the sequences may
differ, they exhibit the same statistical properties -
but if it is desirable to repeat a compufation on a
different machine with the same sequence of random

numbers, then the algorithm should be implemented using

(3) - (5).

The theoretical results which were proven in [1]
concerning the period length of the resulting sequences
hold for the algorithm defined by (3) - (5). For the
implementation in real arithmetic, theéé theoretical
results can be used to give an order of magnitude only,

and no precise results can be obtained.

The apparent limitation of M < 230 for an
implementation in integer arithmetic on a 32-bit
machine can be easily overcome, by using two (or more)
words to represent each integer YM, although this will
obviously require greater computational effort. An

implementation using p 32-bit integers to represent

each YR, permits a choice of modulus up to a maximum of
230P, and it is thus possible to generate arbitrarily

long sequences by a suitable choice of p.

In this paper we derive some preliminary theoretical results
concerning the behaviour of the ACORN sequences; these results
permit us to analyse the behaviour of the ACORN sequences in
response to small perturbations to the seed or the initial values,
and lead to a better understanding of the algorithm. They also
indicate the potential for further analysis of the ACORN
algorithm, and the possibility of proving a priori results

concerning the randomness of the resulting sequences of numbers.

2. EXPLICIT REPRESENTATION OF Ymn

The algorithm defined by (3) - (5) is very well suited to the
computation of the Y™,. However it is useful in understanding

the behaviour of the ACORN generators to derive explicit
representations for the Y™, in terms of the modulus, seed and
initial values. -

Consider first the special case where the seed is equal to one and
the initial values are all equal to zero. The resulting sequence
of numbers will be denoted by z™,. Making use of a standard

result (see for example Prudnikov et al [2]}, equation 4.1.1.26).

n .
} i (i+1) ... (i+m) = n(n+l) ... (n+m+l)/(m+2) (6)

i=1

equations (3) and (4) can be rewritten for this special case as

20 = 1
1 _
Z an - n
n
z? = E i = n(n+l)/2
i=1

an]
L
a
Il
[y Ku ¢

i(i+1)/2 = n(n+l)(n+2)/3!
i=1
: n
Zmn = E i(i+1) ... (i+m-2)/(m-1)!
i=1
= n(n+l) ... (n+m-1)/m! (7)

I

(n+m—1)!/[(n~l)!m!]

The equations (7) hold as long as the right hand side is smaller
than M. Once it exceeds this value, then the correct result is
still obtained from equation (7) provided that the value is taken

modulo M.

Making use of the additive nature of the ACORN generator, it is

now trivial to show that for the general case of 1 < Yoo < M and

Im

0 2Y o <M, m=1l, ..., k the following equation holds

m i m-1i
o=) v (®)

where the Zm_; are as defined by equation (7).

Applying a similar analysis to the sequence defined by equations
(1) and (2) leads to an analgous equation defining XM, for the

0

0 <1 and 0 = Xm0<1,m=1,...,k.

general case 0 < X

Thus

m
v S } i pm-i (9)

where the Zm_ln are as before.

3. DIVERGENCE OF NEIGHBOURTNG ORBITS

Consider the sequence Ykn defined by the seed v and initial

k

0

values Y™ , m=1, ..., k. Suppose that Y n is the perturbed

0
sequence obtained by changing either the seed or one of the

initial values by the smallest possible pertubation; thus

Ymo = Ymo, m=0,..., kK (m#i) and Yl0 = ch + 1. Now making use
of the linearity of (8), an expression for the difference between

the two sequences is given by

_ k-i : :
¢ n "~ [2" n] mod M (10)

The two sequences will be said to have diverged once there is no
longer any discernible relationship between them; this will

certainly be the case once

zk"ln > M/2 (11)

Figure 2 shows values of Zmn plotted against n on a log-log scale
for a series of values of m=(k-i). Given values of M and m, it is

‘possible to determine approximately the smallest value n for which
(11) holds by drawing a horizontal line from the value M/2 on the
y-axis until it intersects with the curve for the appropriate
value of m; if the x~coordinate of this point of intersection is
Xp, then equation (11) holds for all integers n > xp and if np is
the smallest such integer the two sequences will have diverged
after np terms. However, it is difficult to obtain an acﬁurate
estimate of np by this method, particularly for larger values of M
and m.

It is not easy to calculate np directly from (7) and (11).

However, making use of the inequality

[+ m-1)/2)% = ((n-1)/2)2]™2 = [pem-n)) ™2

IA

n{n+l) ... (n+m-1)

1A

(n+(m=-1) /2)M m2>1, n21 (12)
it is possible to obtain upper and lower bounds for np.

Thus,

< = '
M/2 £ 2 5 n, (nD+1) ce. (n

D+m-1)/m!

1A

(ny+(m=1)/2)"/m! o (13)

n. > (m! M/2)Y™® - (n-1)/2 | (14)

and

k-1

M/2 N

v
&3

D " (nD+m—2)/m!

«1 = (n.-1) n
D P

v

((ong-1y + m-23/2)2 = ((m-2)/2))™ 2/m1 (15)

n -1 < [[m! My2) 2/ [(m—l)/2]2]1/2 - (m-1)/2

(m! M/2)1l/m A (16)

1A

Combining (14) and (16)

(m! M/2)l/m - (m=1}/2 = n,. £ n

D D

<my = (! M) 4 (17) .

Thus n, can be bounded below and above by npand ﬁb:which can

each be determined directly given the values of M and m. Further,

from (16) it follows that

u |
I
=]
i

=1 + (m-1)/2
(18)

I

(m+1)/2
so that the estimate L2 will overestimate n, by at most (m+l)/2.

Table I compares values of the calculated bounds n, and ﬁD with

the actual values obtained for n, for a series of values of m and

M. It will be observed from the table that the lower bound is in

practice very close to the actual value. Give M and m = k-i ;&

practical method for obtaining the exact value for np is to

evaluate ny and %, from (17), then evaluate Zk-ln from (7) for

integer values of n between n, and ﬁD; n, is then the smallest
value of n for which equation (11) is satisfied.

4. GROWTH _OF ROUNDING ERRORS

Suppose that the k-th order ACORN generator is implemented in real
arithmetic, for example as in the listing given by Wikramaratna
{1]. Small differences in arithmetic rounding may lead to a
difference in the precise value of the seed - this may be due to a

number of causes, including

(1) Differences in the machine representation of real

numbers on different machines
(ii) Differences between compilers

(iii) Use of different levels of optimisation with the same

compiler

(iv) Minor changes to the code, resulting in the calculation
of the seed being undertaken in a slightly different

way.

Suppose then that we make a small perturbation of size £ in the

seed X0;. The expressions derived in section 2 allow us to make

an estimate of the rate of growth of this perturbation, and
illustrate the importance of using the implementation in integer
arithmetic if the sequences are reguired to be reproducible at a
future date. The growth of the perturbation can be modelled by
szkn, that is by the growth of a unit perturbation in an integer
implementation of the k-th order ACORN generator with M = ¢~1,
Similarly, the growth of a perturbation of size ¢ in the i-th

initial value X1y can be modelled by ezk—i,.
This is illustrated in single precision real arithmetic for the
case of a minor change to the calculation of the seed, replacing a
calculation of the form

XV(1) = 0.1 * SQRT (2.0)/1.42

by the calculation

XV (1)

il

SQRT (2.0)/14.2

The only difference in the two values of the seed‘XV(l) is the
rounding error induced by the different order of the computation.
Two sequences A, and B of random numbers were generated for the
10-th order ACORN generator using the two methods of calculating
the seed given above. The initial difference in the seeds was
7.5 x 1072, approximately 2727, 1In each case the initial values
were all identically zero; Let 6y be the difference modulo 1

between the n-th members of the two sequences, thus

10

%n = Ap"Bp)moa 1

(19)
=6, = (By~2)nog 1
By definition, both 8, and (1-é,) must always be less than or
equal to one. Of the sequences é§, and (1-8y), one will start
close to zero and increase slowly at first and then more rapidly
towards the value one, after which there is no longer any

discernible pattern to the values; the other will start close to

one and decrease towards zero.

Figure 3a shows values of én and (1-6n) plotted against n on a
linear scale. In particular it should be noted that the two

sequences have diverged at the point where the plots of én and
(1-8p) intersect (ie after the first 23 terms in the sequences

have been generated).

Figure 3b shows the growth of a perturbation of size 1 in the 10th
order ACORN generator, implemented in integer ariﬁhﬁetic with
M=227; The plot shows values of z10./M plotted against n. These
values could be obtained by calculating 210, from equation (7) and
normalising to the unit interval; in practice it is simpler to
make a series of calls to the Fortran function ACORNI (listed in
figure 1) with order 10, modulus 227, seed 1 and initial values
all zero which gives the values of z10,/M directly. The model

predicts divergence of the sequences after 24 terms.

11

Finally figure 3c shows the ratio between the rounding error &,
and the modelled pertubation growth Zlon/M, plotted against n:
this ratio is close to one (fluctuating between 0.8 and 1.4),
which further demonstrates the adequacy of the mo&el for the
growth of the rounding errors up to the point at which the

sequences have diverged.-

In double precision arithmetic, the initial rounding error is much
smaller, and the sequences diverge more slowly; however the 10th
order sequences still diverge after a few hundred terms (as com-

pared with a few tens of terms in single precision arithmetic).

5. CONCTUSTONS

(i) There are a number of advantages of implementing the
ACORN algorithm in exact integer arithmetic, equations
(3) - (5), rathef than using real arithmetic, equations
(1) - (2), as proposed originally by Wikramaratna [1].
The main advantage is that the sane sequénce can be
reproduced on any machine. A secondary advantage is
that the integer algorithm is more amenable to
theoretical analysis, as demonstrated both in this
paper and in [1]. However, if reproducibility is not
important, the real implementation is perfectly
adequate in practice, as shown by the results of
statistical tests applied to the sequences which are

generated [1].

12

(1]

(2]

(ii)

(iii)

In this paper we have derived explicit formulae for the
numbers generated by the k-th order ACORN generators
implemented in exact integer arithmetic for any values
of the modulus, seed and initial valués. These
formulae improve our understanding of the behaviour of
the ACORN sequences and allow us to analyse the
divergence of neighbouring orbits in the integer
implementation. For an implementation in real
arithmetic, they provide an approximate model for the

rate of growth of rounding errors.

The explicit formulae will provide a basis for further
theoretical analysis of the ACORN generator, aimed at
proving a priori results concerning the randomness of

the resulting segquences of numbers.

REFERENCES

R.S.Wikramaratna, ACORN - A New Method for Generating

Sequences of Uniformly Distributed Pseudo-random Numbers,

J Comput. Phys., 83(1)16-31 (1989)

A.P.Prudnikov, Yu.A.Brychkov and 0.I.Marichev, Integrals and

Series - Volume I Elementary Functions (Gordon and Breach

Science Publishers, New York, 1986).

13

aaoaaoaoaQoQaooOOooonNoNOQoOOQOOOOOO0OnN0OON00000n

DOUBLE PRECISION FUNCTION ACORNI (XDUMMY)

Fortran implementation of ACORN random number generator
of order less than or equal to 12 (higher orders can be
obtained by increasing the parameter value MAXORD).

R.S.Wikramaratna
Winfrith Petroleum Technology _
Dorchester, Dorset DT2 8DH, United Kingdom.

The variable XDUMMY is a dummy variable. The common block
IACO is used to transfer data into the function.

Before the first call to ACORN the common block IACO must
be initialised by the user, as follows. The values of
variables in the common block must not subsequently be
changed by the user.

KORDEI - order of generator required (must be =< MAXORD)

MAXINT - modulus for generator, must be chosen small
enough that 2*MAXINT does not overflow

IXV(1) - seed for random number generator
require 0 < IXV(1l) < MAXINT

(IXV(I+1),I=1,KORDEI)
~ KORDEI initial values for generator
require 0 =< IXV(I+1) < MAXINT

After initialisation, each call to ACORN generates a single
random number between 0 and 1.

An example of suitable values for parameters is

KORDEX = 10

MAXINT = 2%*%30 :

IXV(1) = an odd integer in the (approximate) range
(0.00L * MAXINT) to (0.999 % MAXINT)

IXV(I+1) = 0, I=1,KORDEI

PARAMETER (MAXORD=12,MAXOP1=MAXORD+1)
COMMON /IACO/ KORDEI,MAXINT,IXV(MAXOP1)
DO 7 I=1,KORDEI
IXV(I+1)=(IXV{I+1)+IXV(I))
IF (IXV(I+1).GE.MAXINT) IXV(I+1)=IXV(I+1)-MAXINT
CONTINUE
ACORNT=DFLOAT (IXV (KORDEI+1))/MAXINT
RETURN
END

FIG. 1. Fortran implementation of the ACORN
generator in integer arithmetic

14

210

20

1.5

0.5

230

o
'" It ™
/4
i £ L
i by
&
T T T T H T T T T
20 210 220
FIG. 2. Graph showing Z™, plotted ogainst n
for values of m between 1 and 10
- (2)
4 (6)
D (c)
i T T T 1 1
0 4 8 12

FIG. 3. Groph showing

(a) observed growth of rounding errors ,and (1-0,)

(o) theoretical growth of rounding errors

(c) ratio of actua!l error to theoretica! error
for the 10th order ACORN genergtor implemented

in single precision real arithmetic

12 44 1T ¥0°6 89°6T L 81 ¥ £€8°61 ¥ €e” og
L EC ¢t YL°0T £2°8T L mN.m. 90" ¥T 14 90°T s
69°¢t2 T 6T°CT 0" LT 8 ¥6°9 AR 4 ¥8°'t cZ
£49°S2 eT £G° LT 9991 0T 9v*'8 YL°0T 14 ¥LZ ST
08*'ve ot 0E° 62 06°LT £1 oy ¢i av*e g S6°¢C 0T
0L*6% GE oL VL Z6'81 ST Z6°ET 62'6 o} 6c°¥v 6
AN 1994 ,wm.mv £9°0¢ LT €0°9T TZ'6 9 LV 8
TL*09 LS TL*9G 8T° €T 02 8T 61 ¥Z°6 9 ¥g*a L
S€£°98 £8 98°¢8 88°LC G2 BE'VT Ly"6 L L6*S 9
ST 99T ,¢¢H ST E¥T 6Z°LE SE 62" ¥FE LO°0T 8 LO" L S
Qm Qa Tz QM o: Qﬂ Qw D: Qm
w
o’ ozt o = W
"H puR W JO sSeNTeA JO S9TI8S B 03 Umumaﬁoﬁmo_
Ju o senTea 3oexs pue du 1oy spunoq Joaddn pue Jomo] I TdTIYL

