```
RPS Energy
```

Specification, Implementation and
Numerical Analysis of a k-Distributed Uniform Pseudo-random Number Generator (ACORN)

Roy S Wikramaratna

WikramaratnaR@rpsgroup.com

Applied Mathematics and Numerical Analysis Seminar, Reading University

22 February 2008

RPS Energy Acknowledgements

- Chris Farmer (Schlumberger and Oxford University)
- Suggesting problem (1984)
- Continuing interest in progress and results
- RPS Energy
- Current employer
- For giving me the time to present seminar
- Numerical Algorithms Group Ltd, Oxford
- For challenging me to provide more conclusive demonstrations of effectiveness of ACORN algorithm
- Special thanks to Brian Ford, Martyn Byng at NAG

RPS Energy Some initial thoughts

- Consider the equation $\quad Y^{m}{ }_{n}=\left(Y^{m-1}{ }_{n}+Y^{m}{ }_{n-1}\right)_{\bmod M}$
- Some more information required - for example
- Specify ranges for indices m, n
- $m=1,2, \ldots, k ; n=1,2, \ldots$
- Specify initial values $Y^{0}{ }_{n}$ and $Y{ }_{m}$; any constraints on values taken?
- Y, M are integers; any constraints on M ? Or Y real, $M=1$?
- Is there any useful (and/or interesting) mathematics that comes out of studying this equation?
- What exactly do we mean by useful?
- Does it arise in a real problem?
- Does studying it help us to solve any real problems?

RPS Energy Outline

- Background
- Pseudo-random number generation
- Some alternative approaches to the problem
- ACORN algorithm
- Specification
- Implementation
- Mathematical and numerical analysis
- Leading to the conclusion that ACORN algorithm is practical approach to uniform pseudo-random number generation
- Easy to implement
- Scales to any size of problem (gives uniformity in k dimensions, any given k; period length in excess of any given number)
- Gives rise to some very interesting analysis and useful mathematical results

RPS Energy Some background

- What is a pseudo-random sequence of numbers?
- Sequence generated from specified algorithm and initial state
- Algorithm chosen so that sequence appears random
- Difficult to identify current state precisely without exact knowledge of the sequence
- Small perturbations in current state make large difference to future evolution
- Many different mathematical and numerical problems whose numerical solution requires a reliable source of uniformly distributed (pseudo-)random numbers
- Monte Carlo methods, with applications including
- numerical optimisation
- numerical integration
- Bayesian inference
- geostatistical simulation, statistical physics, other statistical applications
- Games of chance (computer simulation of shuffling cards, dice, roulette wheels, etc)
- Cryptography and related applications

RPS Energy Motivation

- Circa 1984, at Winfrith (with Chris Farmer)
- Developing numerical applications (in particular moving point methods for convection-diffusion problems) which required uniform 'random' distribution of points in 2D (and ultimately 3D) grid cells
- Desire for independence from commercial software and freedom to run on any machine
- Seeking method that was simple to implement as well as reliable
- Problems and pitfalls
- Turned out to be a bit more complicated (and a whole lot more interesting) than it had seemed at first sight

RPS Energy A cautionary tale ...(1)

- Chebshev mixing method (proposed by Erber, Everett and Johnson, J. Comput. Phys., vol 32, p168-, 1979)
$Z_{n}=Z_{n-1}^{2}-2$ where initial Z_{0} lies in the range $(0,2)$
$U_{n}=(1 / \pi) \cos ^{-1}\left(Z_{n} / 2\right)$
- Superficially, appears a good source of $U(0,1)$ numbers
- Simple, easy to implement
- BUT turns out to have undesirable qualities, making it unsuitable as a source of random numbers
- As later pointed out by Erber et al, J. Comput. Phys., 1983

RPS Chebyshev generator - distribution in one and two dimensions

CDF

Chebyshev Generator

RPS Energy Analysis of Chebyshev algorithm

- Can rewrite Chebyshev generator as

$$
\begin{aligned}
& U_{n}=(1 / \pi) \cos ^{-1}\left(Z_{n} / 2\right)=(1 / \pi) \cos ^{-1}\left(\left(Z_{n-1}^{2}-2\right) / 2\right) \\
& \begin{array}{r}
\cos \left(\pi U_{n}\right)=\left(Z_{n-1}^{2}-2\right) / 2=2\left(Z_{n-1} / 2\right)^{2}-1 \\
=2 \cos ^{2}\left(\pi U_{n-1}\right)-1=\cos \left(2 \pi U_{n-1}\right)
\end{array}
\end{aligned}
$$

- Hence, simplifies to

$$
\begin{array}{ll}
U_{n}=2 U_{n-1} & U_{n-1}<0.5 \\
U_{n}=2-2 U_{n-1} & U_{n-1} \geq 0.5
\end{array}
$$

- Using exact finite precision arithmetic, with k binary digits, sequence collapses to zero after k steps
- Only reason the generator 'works' at all is due to rounding error in inverse cosine calculation

RPS Energy Observations

- Many different generators have been proposed over the years which initially appeared to pass a range of empirical tests of uniformity and randomness but which later turned out to have serious inadequacies in certain other specific tests of randomness
- It might seem these pitfalls could be largely overcome if it were possible to prove purely from theoretical considerations that a particular algorithm would pass certain classes of test, without the need for extensive empirical testing
- It would be nice to have a family of generators, defined by some parameter, which 'converged' to uniform distribution (in k dimensions) as a limiting case for that parameter
- Could then repeat calculations with different sequences (defined by different values of the relevant parameter) and check for convergence of the result
- eg Monte-Carlo integration in k-dimensions

RPS Energy A cautionary tale ...(2)

- Linear congruential generator, LCG (see discussion in Knuth, The Art of Computer Programming, Vol 2. Seminumerical algorithms)

$$
Y_{n}=\left(a Y_{n-1}+c\right)_{\bmod M} \quad X_{n}=Y_{n} / M
$$

- Depends on appropriate choice of multiplier a, additive constant c and modulus M
- For any given M only a very small proportion of choices of multiplier give good distribution properties
- Extensive empirical testing required for each choice of M
- Often restrict to generators with constant $c=0$ (multiplicative congruential generator, MCG)
- Period length always $\leq M$

RPS Energy MCG issues (also apply to LCG)

- With large M can get reasonable distribution properties in moderate number of dimensions and long period
- Example: NAG routine G05CAF (modulus 2^{59}, multiplier 13^{13}; period length 2^{57}, provided seed is odd)
- To increase period, require increased modulus plus extensive empirical testing of large numbers of multipliers
- No a priori way of predicting good multipliers
- For parallel processing, need much longer sequences (very large modulus) or many different statistically independent generators
- With smaller M, serious inadequacies with distribution properties
- Many historical examples (smaller modulus) that were widely used and later turned out to have disastrous flaws on certain problems
- eg RANDU (modulus 2^{31}, multiplier 65539, widely used in the scientific computing world for many years) but has very poor 3-d distribution
- Might also have unforseen problems with current generators
- Some examples follow

RPS MCG, modulus $\mathbf{2}^{\mathbf{8}}=\mathbf{2 5 6}$, multiplier=137, initial value=1 (period=32)

Linear Congruential Generator

RPS Energy
MCG, modulus $\mathbf{2}^{12}=4096$, multiplier=141, i.v. =1 (period=1024)

Linear Congruential Generator

Linear Congruential Generator

Linear Congruential Generator

Linear Congruential Generator

RPS Energy
 Additive congruential random number (ACORN) generator

- ACORN generator
- Original discovery dates back to 1984/85
- Reference Wikramaratna, J. Comput. Phys., vol 83, p16-31 (1989) and follow up papers
- Simple to implement
- Long period ($\geq M$; multiple of the modulus)
- Amenable to theoretical analysis
- k-th order generator approximates to k-distributed
- in the sense that it can approximate arbitrarily closely to any specified finite number of terms from a sequence that can be proved to be k-distributed

RPS Energy ACORN random number generator

- k-th order ACORN generator defined from
- an integer modulus M
- an integer seed Y_{0}, $\left(0<Y_{0}<M\right)$
- an arbitrary set of k integer initial values $Y^{m}{ }_{0}, m=1, \ldots, k$, each satisfying $0 \leq Y^{m}{ }_{0}<M$

$$
\begin{array}{ll}
Y^{0}{ }_{n}=Y^{0}{ }_{n-1} & n \geq 1 \\
Y^{m}{ }_{n}=\left(Y^{m-1}{ }_{n}+Y^{m}{ }_{n-1}\right)_{\bmod M} & n \geq 1, m=1, \ldots, k \\
X^{k}{ }_{n}=Y^{k}{ }_{n} / M & n \geq 1
\end{array}
$$

RPS Energy Calculating ACORN variates

$$
\begin{aligned}
& \text { Order 0: } Y^{0} \rightarrow \underset{\downarrow}{Y_{1}^{0}} \rightarrow \underset{\downarrow}{Y^{0}{ }_{2}} \rightarrow \underset{\downarrow}{Y_{3}^{0}} \rightarrow \underset{\downarrow}{Y^{0}{ }_{4}} \rightarrow \underset{\downarrow}{ } \rightarrow \underset{Y^{0}{ }_{n}}{ } \\
& \begin{array}{rlrl}
\text { Order 1: } \left.Y^{1}\right) \rightarrow Y_{1}{ }_{1} \rightarrow Y^{1}{ }_{2} \rightarrow Y^{1}{ }_{3} \rightarrow Y^{1}{ }_{4} & \rightarrow \ldots \rightarrow Y^{1}{ }_{n} \\
\downarrow & \downarrow & \downarrow & \downarrow
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Order } k: Y^{k}{ }_{0} \rightarrow Y^{k}{ }_{1} \rightarrow Y^{k}{ }_{2} \rightarrow Y^{k}{ }_{3} \rightarrow Y^{k}{ }_{4} \rightarrow \ldots \rightarrow Y^{k}{ }_{n} \\
& \left.U[0,1): \quad X_{1}^{k} \rightarrow X^{k}\right) \rightarrow X_{3} \rightarrow X_{4}^{k} \rightarrow \ldots \rightarrow X^{k}{ }_{n}
\end{aligned}
$$

RPS Energy Some observations

- Numbers $X^{k}{ }_{n}$ approximate to uniformly distributed on the unit interval in up to k dimensions
- provided a few simple constraints on initial parameter values are satisfied,
- C1. Modulus M should to be a large integer (typically a prime number raised to an integer power)
- C2. Seed $Y_{0}{ }_{0}$ and modulus should be relatively prime
- C3. Initial values $Y^{m}{ }_{0}$ can then be chosen arbitrarily
- Conditions C1 and C2 ensure a large period length (an integer multiple of the modulus).

RPS Energy Suitable parameter choices

$$
\begin{array}{ll}
Y_{n}^{0}=Y_{n-1}^{0} & n \geq 1 \\
Y_{n}^{m}=\left(Y_{n}^{m-1}{ }_{n}+Y^{m}{ }_{n-1}\right)_{\bmod M} & n \geq 1, m=1, \ldots, k \\
X_{n}^{k}=Y_{n}^{k} / M & n \geq 1
\end{array}
$$

- Suitable parameter combinations include
- M a large prime; $Y{ }_{0}$ any integer smaller than M
- $M=Q^{r}$ for prime Q and some integer $r ; Y_{0}$ any integer not a multiple of Q
- $\quad M=2^{30 p}$ for some (small) integer $p ; Y_{0}$ an odd integer
- this last choice is particularly convenient, both for efficient implementation and theoretical analysis

RPS Energy Implementation of ACORN algorithm

- Simple to implement in any high-level language
- assumes that integer representation allows integers up to 2^{31} to be calculated and stored without overflow
- implement for modulus $M=2^{30 p}$, integer $p=2,3$, or 4
- All computations performed in exact integer arithmetic, apart from conversion from integer modulo M to double precision real
- identical results on any machine and/or language (to the accuracy of the machine representation of a double precision real number).
- Examples in FORTRAN 77 - implement as a function call with fewer than 20 lines of executable code
- Analogous implementations in both C and $\mathrm{C}++$
- NAG plan to introduce ACORN algorithm in next release of their subroutine libraries
- Version currently available for download and testing at http://www.nag.co.uk/nagware/Examples/Acorn.asp

RPS Energy
 Example implementations in FORTRAN 77, modulus $\mathbf{2}^{30}$ or $\mathbf{2}^{60}$

DOUBLE PRECISION FUNCTION ACORNI (XDUM)
ACORN GENERATOR
MODULUS $=<2 \wedge 30$, ORDER $=<12$
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
PARAMETER (MAXORD=12,MAXOP1=MAXORD+1)
COMMON /IACO/ KORDEI,MAXINT,IXV(MAXOP1)
DO 7 I=1, KORDEI
$\operatorname{IXV}(I+1)=(\operatorname{IXV}(I+1)+I X V(I))$
IF (IXV(I+1).GE.MAXINT)
$\operatorname{IXV}(I+1)=I X V(I+1)-M A X I N T$
7 CONTINUE
ACORNI= (DBLE (IXV (KORDEI+1)) /MAXINT RETURN
END

- XDUM - dummy variable
- Common block IACO used to transfer data to the function
- Before first call, initialise variables in common block IACO (user must not subsequently change any of these parameters)

KORDEI - Order ≤ 12 (higher orders possible by increasing parameter MAXORD)

- MAXINT - modulus for generator ($\leq 2^{30}$, to avoid integer overflow
- $\quad \operatorname{IXV}(1)$ - seed for generator (seed non-zero and < MAXINT, relatively prime with MAXINT; if MAXINT $=2^{30}$, then IXV(1) must be odd)
- $\quad \operatorname{IXV}(I+1), \mathrm{I}=2, \mathrm{KORDEI}$ - initial values for generator (initial values< MAXINT)
- After initialisation, each call generates a single number between 0 and 1 , returning it as the function value ACORNI.

DOUBLE PRECISION FUNCTION ACORNJ (XDUM)

C

```
ACORN GENERATOR
MODULUS =< 2^60, ORDER =< 12
```

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
PARAMETER (MAXORD=12,MAXOP1=MAXORD+1)
COMMON /IACO2/ KORDEJ
1 ,MAXJNT, IXV1 (MAXOP1) , IXV2 (MAXOP1)
DO 7 I=1,KORDEJ
$\operatorname{IXV1}(I+1)=(\operatorname{IXV1}(I+1)+\operatorname{IXV} 1(I))$
$\operatorname{IXV} 2(I+1)=(\operatorname{IXV} 2(I+1)+I X V 2(I))$
IF (IXV2 (I+1).GE.MAXJNT) THEN
IXV2 (I+1) =IXV2 (I+1) -MAXJNT
IXV1 $(I+1)=I X V 1(I+1)+1$
ENDIF
IF (IXV1 (I+1).GE.MAXJNT)
1 IXV1 (I+1)=IXV1 (I+1)-MAXJNT
7 CONTINUE
ACORNJ= (DBLE (IXV1 (KORDEJ+1))
1 +DBLE (IXV2 (KORDEJ+1))/MAXJNT) /MAXJNT
RETURN
END

RPS Energy Extension to larger modulus $\mathbf{2}^{\mathbf{6 0}}, \mathbf{2}^{\mathbf{3 0} \boldsymbol{p}}$

- Modulus 2^{60}
- Use two integers $\left(I_{1}, I_{2}\right)$, each less than 2^{30}, to represent a single integer value I less than $2^{60} \quad I=\left(2^{30} \times I_{1}\right)+I_{2}$
- Given two integers I, J represented this way, it is straightforward to do integer addition modulo 2^{60}
- Generalise to modulus $2^{30 p}$
- Use p integers $\left(I_{1}, I_{2}, \ldots, I_{p}\right)$, each less than 2^{30}, to represent a single integer value I less than $2^{30 p}$

$$
I=\left(2^{\left.30(p-1) \times I_{1}\right)+\left(2^{30(p-2) \times} \times I_{2}\right)+\ldots+I_{p}, ~}\right.
$$

- Computational effort to generate each random variate proportional to p (equivalently, proportional to $\log _{2} M$)
- Period length is multiple of the modulus M, as long as seed is odd (ie as long as I_{p} is odd)

RPS Energy
 Computational performance (Martyn Byng, NAG)
 Time to exhaust period with single processor:

ACORN modulus $2^{\wedge} 30 \sim 0.1$ to 0.8 days
ACORN modulus $2^{\wedge} 60 \sim 0.3$ to 3.5 million years
Timing Comparisons ACORN Generators (Modulus 2^{\wedge} ^30p, different p) and NAG LCG (G05CLF)

(Timings on:Windows 2000 Professional on Pentium III 600MHz processor with 128Mb memory using Compaq Visual Fortran 6 Compiler)

RPS Energy
 ACORN, modulus $2^{8}=256$, order 8 (period=8×256=2024)

ACORN Generator

ACORN Generator

ACORN Generator

ACORN Generator

ACORN Generator

ACORN Generator

ACORN Generator

RPS Energy Empirical testing

- Consider ACORN generators with modulus $\geq 2^{60}$, order ≥ 10
- Have carried out wide range of tests on the ACORN generators over many years. Some recent tests carried out include
- Testing on a Computational Physics example, ~2000
- Simulation of 2D Ising model, using cluster algorithms and in particular the Wolff algorithm [U. Wolff, Phys. Rev. Lett., 62, 361, 1989].
- A.M. Ferrenberg, D.P. Landau and Y.J. Wong [Phys. Rev. Lett., 69, 3382, 1992] demonstrated that a number of supposedly 'high quality' random number generators produced systematically incorrect results on this problem.
- M. Luscher [Computer Physics Communications, 79, 100, 1994] has suggested that this is a particularly sensitive test of random number generators.
- Tests reported by Ferrenberg et al and by Luscher were repeated using ACORN algorithm as source of random numbers [U. Wolff, personal communication, 2000].
- Discrepancy between simulation results and the exact analytic solution was statistically insignificant - ACORN generator passed this test (good LC generators also pass test)
- Application of standard empirical test suites, over last 5+ years
- Diehard - [Wikramaratna, 2008, submitted to JCAM]
- Showed that for given modulus, got more bits passing with ACORN than with LCG of same modulus and with good choice of multiplier
- With modulus $\geq 2^{60}$, order ≥ 10 get ~ 42 random bits (ie full double precision)
- TestU01 - [Martyn Byng,NAG, personal communication, 2008]

RPS Energy Theoretical analysis and results

- Main theoretical results to date
- Closed form expression for n-th term
- Periodicity (note larger than LCG with similar modulus)
- Parallelisation of Monte-Carlo calculations
- STRIDE algorithm
- Equivalence with specific multiple recursive and matrix generators
- k-th order ACORN generator approximates to k distributed

RPS Energy

Closed-form expression for n-th term

 in ACORN sequenceDefine $Z^{m}{ }_{n}$ as follows

$$
\begin{array}{lll}
Z^{0}{ }_{n}=1 & Z^{1}{ }_{n}=n & Z^{2}{ }_{n}=\sum_{i=1}^{n} i=\frac{n(n+1)}{2} \\
Z^{3}{ }_{n}=\sum_{i=1}^{n} \frac{i(i+1)}{2}=\frac{n(n+1)(n+2)}{3!} & \ldots & Z^{m}{ }_{n}=\frac{(n+m-1)!}{(n-1)!m!}
\end{array}
$$

Leads to the following closed form expression for $Y^{m}{ }_{n}$
$Y^{m}=\left(\sum_{i=0}^{m} Y^{i}{ }_{0} Z^{m-i}{ }_{n}\right)_{\bmod M} \quad$ where $\quad Z^{m-i}{ }_{n}=\frac{(n+m-i-1)!}{(n-1)!(m-i)!}$

RPS Energy Period length (1989)

- Have proved that the period length of an ACORN sequence with modulus equal to a power of two will be an integer multiple of the modulus, provided only that the seed is chosen to be odd.
- Period length of the sequence can be increased, effectively without limit, simply by increasing the value of the modulus by a suitable factor and then choosing the seed to take an odd value.
- Implementation is straightforward, for arbitrarily large modulus
- Contrast with MCG/LCG for which the period length can never exceed the modulus
- Increasing the modulus for a linear congruential generator is nontrivial as a result of need to identify appropriate new values of the parameters a and c in order to ensure reasonable distribution properties in higher dimensions
- implementation of a linear congruential generator becomes progressively more complicated with increasing modulus.

RPS Energy Conjecture (2007) on period length

- Let X^{k} be a k-th order ACORN generator, with modulus equal to a prime power ($M=q^{t}$, where q is a prime) and suppose the seed and modulus are relatively prime. Then the sequence $X^{k}{ }_{n}$, $k=1, \ldots, n$ will have period length equal to $q^{i} M=q^{i+t}$, where i is the largest integer such that $q^{i} \leq k$.
- Observations
- Seed and modulus relatively prime means seed should not be a multiple of q
- If $q=2$, then condition satisfied provided only that q takes odd value
- Result holds irrespective of initial values
- Restriction on seed is necessary (consider case with seed equal to q and all initial values zero - first order generator has period M / q
- Examples (see also next slide)
- Modulus 2^{60}, order 10 gives period 2^{63}
- Modulus 2^{90}, order 16 gives period 2^{94}

RPS Energy Period lengths for various moduli

RPS Energy
 Parallelisation of Monte-Carlo calculations (2000)

- Approaches to parallelisation
- Parameterisation (define family of random number generators having a parameter that can be varied between different processors)
- Success dependant on statistical independence of the different generators
- Splitting (output from a single random number generator with long period is split into a number of sub-streams which can then be used either on different processors or for different realisations of the Monte-Carlo calculation)
- If number of variates per realisation is known (or has a known bound) then can do identical calculation on any number p of processors with speed-up factor very close to p
- Needs efficient algorithm to take large strides (fixed length) through the sequence of random numbers
- 'Efficient' means much faster than stepping through the sequence term by term
- Need very long period length (sufficient to carry out full set of realisations)

RPS Energy STRIDE algorithm

Write $\quad Y^{m}{ }_{j+n}=\left(\sum_{i=0}^{m} Y^{i}{ }_{j} W^{m-i}{ }_{n}\right)_{\bmod M} \quad$ where $\quad W^{m-i}{ }_{n}=\left(Z^{m-i}{ }_{n}\right)_{\bmod M}$

- By calculating the W^{m-i} for a given value of $n=s$ (the initialisation step), it becomes possible to calculate strides of an arbitrary length s through an ACORN sequence (the stride step) by making use of this equation
- Provided only that it is possible to carry out both multiplication and addition modulo M (note that stride step is carried out once per realisation)
- For initialisation step, an obvious way of calculating the W^{m-i} is to initialise an m-th order ACORN generator with seed equal to 1 and all the initial values zero and apply the ACORN algorithm m times, noting that in this case the $W^{m-i}{ }_{n}$ are precisely the $Y^{m-i}{ }_{n}$
- For large s, more efficient approaches to initialisation are possible (but note that in any case the initialisation step only needs carrying out once, or can be pre-calculated)

RPS Energy
 STRIDE algorithm (more efficient initialisation)

Observe that $\quad W^{m}{ }_{2 j}=\left(\sum_{i=0}^{m} W_{j}^{i} W^{m-i}{ }_{j}\right)_{\bmod M}$

- For large n it becomes more efficient to apply an algorithm that takes advantage of this - equivalent to taking stride step of length j through ACORN sequence initialised with seed W_{j}^{0} and initial values $W^{i}, i=1, \ldots, m$
- Initialisation for stride length 2^{s} can be done in time equivalent to s 'stride' steps (compared with 2^{s} 'ACORN' calls using original approach)
- Initialisation for any stride length between 2^{s} and ($2^{s+1}-1$) can be done in time equivalent to at most s 'STRIDE' steps and s 'ACORN' calls

RPS Energy
 Equivalence with multiple recursive generators (2007) ...

- Generalised MRG, order k : each variate is a linear combination of previous k variates and a constant
- Normalise to the unit interval by dividing by M

$$
y_{j}=\left(a_{1} y_{j-1}+a_{2} y_{j-2}+\ldots+a_{k} y_{j-k}+c\right)_{\bmod M} \quad x_{j}=y_{j} / M
$$

- k-th order ACORN is equivalent to a k-th order generalised MRG with coefficients a_{j}^{i} and c where - a_{j}^{i} alternate in sign; magnitude first increases, then decreases

$$
a_{i}=\left((-1)^{i+1} \frac{k!}{(k-i)!i!}\right)_{\bmod M} i=1, \ldots, k ; \quad c=Y_{0}^{0}
$$

RPS Energy ... and with matrix generators (2007)

- Generalised MRG can be re-written

$$
\begin{aligned}
& \left(\begin{array}{c}
y_{j-k+1} \\
y_{j-k+2} \\
\vdots \\
y_{j-1} \\
y_{j}
\end{array}\right)=\left[\left(\begin{array}{ccccc}
0 & 1 & \cdots & 0 & 0 \\
0 & 0 & \ddots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & 1 \\
a_{k} & a_{k-1} & \ldots & a_{2} & a_{1}
\end{array}\right)\left(\begin{array}{c}
y_{j-k} \\
y_{j-k+1} \\
\vdots \\
y_{j-2} \\
y_{j-1}
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
c
\end{array}\right)\right]_{\bmod M} \\
& \mathbf{y}_{j}=\left(\mathbf{G}_{k} \mathbf{y}_{j-1}+\mathbf{c}\right)_{\bmod M} \\
& \mathbf{y}_{j}=\left(\left[\mathbf{G}_{k}\right]^{k} \mathbf{y}_{j-k}+\left(\left[\mathbf{G}_{k}\right]^{k-1}+\ldots+\left[\mathbf{G}_{k}\right]^{1}+\left[\mathbf{I}_{k}\right] \mathbf{]}\right)_{\bmod M}\right. \\
& =\left(\left[\mathbf{G}_{k}\right]^{k} \mathbf{y}_{j-k}+\left[\mathbf{B}_{k}\right] \mathbf{c}\right)_{\bmod M}=\left(\left[\mathbf{G}_{k}\right]^{k} \mathbf{y}_{j-k}+\mathbf{b}_{k} c\right)_{\bmod M}
\end{aligned}
$$

- Apply k times - gives matrix equation with disjoint vectors
- This is a particular case of a matrix generator (with matrix $\left[\mathbf{G}_{k}\right]^{k}$)
- Can study the form of the matrices $\left(\mathbf{G}_{k},\left[\mathbf{G}_{k}\right]^{k}, \mathbf{B}_{k}\right)$, vector \mathbf{b}_{k} and the magnitude of the coefficients (see paper)
- Observe in particular that $\mathbf{G}_{k}{ }^{-1}=\mathbf{G}_{k}{ }^{\mathrm{R}}$ where ${ }^{\mathrm{R}}$ denotes reversing order of rows and columns (equivalently, rotating by 180° about mid-point of matrix)

RPS Energy \boldsymbol{k}-distributed sequences - definitions

- A sequence $\left(\mathbf{x}_{n}\right)$ is uniformly distributed modulo 1 in \mathfrak{i}^{\star} if for all $[\mathbf{a}, \mathbf{b})$ contained in or equal to \mathfrak{I}^{k} (where $\mathfrak{I}^{k}=[\mathbf{0}, \mathbf{1}$) is unit k-cube)

$$
\lim _{N \rightarrow \infty} \frac{A([a, b) ; N))}{N}=\prod_{j=1}^{k}\left(b_{j}-a_{j}\right)
$$

- A sequence $\left(\mathbf{x}_{n}\right)$ is well distributed modulo 1 in $\mathfrak{W i}^{k}$ if uniformly in p and for all $\left[\mathbf{a}, \mathbf{b}\right.$) contained in or equal to $\mathbb{I J}^{k}$

$$
\lim _{N \rightarrow \infty} \frac{A([a, b) ; N, p))}{N}=\prod_{j=1}^{k}\left(b_{j}-a_{j}\right)
$$

- $A([\mathbf{a}, \mathbf{b}) ; N, p)$ denotes number of points $\left\{\mathbf{x}_{p+n}\right\}, 1 \leq n<N$ that lie in $[\mathbf{a}, \mathbf{b})$ where $\{\mathbf{x}\}$ means fractional parts of \mathbf{x}
- $A([\mathbf{a}, \mathbf{b}) ; N)$ is defined to be equal to $A([\mathbf{a}, \mathbf{b}) ; N, 0)$

RPS Energy \boldsymbol{k}-distributed property (1992)

Normalised form of ACORN generator:

$$
\begin{array}{ll}
X^{0}{ }_{n}=X^{0}{ }_{n-1} & n \geq 1 \\
X^{m}{ }_{n}=\left(X^{m-1}{ }_{n}+X^{m}{ }_{n-1}\right)_{\bmod 1} & n \geq 1, m=1, \ldots, k
\end{array}
$$

- The k-th order ACORN random number generator (normalised to the unit interval) is well distributed modulo 1 in ai k, provided that the seed is irrational
- Contrast with much weaker corresponding result for LCG - can show that a normalised LCG can be uniformly distributed (but NOT well distributed) modulo 1 in \rightsquigarrow, and is NOT uniformly distributed (or well distributed) modulo 1 in \Re^{k} for any $k>1$
- Although any practical implementation uses rational seeds, this suggests that with large enough modulus ACORN sequences can provide good approximation to k-distributed

RPS Energy k-distributed convergence (2007)

- Given an arbitrary k-th order ACORN sequence together with modulus $M=2^{m}$ and an appropriate set of initial conditions (including an odd value for the seed), together with a required precision $b \leq m$; then the first M terms of the sequence are equal (to b binary digits precision) to the first M terms of an infinite sequence that is w.d. mod 1 in i^{k}.
- Given any normalised k-th order ACORN sequence together with an appropriate set of initial conditions (in particular, with an irrational seed χ_{0}^{0} - which ensures that the sequence is is w.d. $\bmod 1$ in in^{k}), then we can calculate the first $N=2^{\nu}$ terms of the sequence to β binary digits accuracy from an ACORN sequence with appropriate values of the modulus, seed and initial values.
- These results formalise the notion that "with large enough modulus ACORN sequences can provide good approximation to k distributed"

RPS Energy Where Next?

- Tremendous scope for further theoretical analysis of ACORN algorithm
- Needs a concentrated effort to see how far theory can be developed
- Limits on how fast it can be developed by one person working occasionally in spare time
- Great opportunity to look at some very interesting applications of mathematics, and to make a real impact
- Currently looking at applications in Monte-Carlo integration
- Identifying appropriate test examples in higher dimensions
- Comparing results with different generators
- Does 'convergence' property for ACORN generators give a real practical benefit?
- Numerical Algorithms Group will include ACORN generator in next release of NAG subroutine libraries
- Provides a focus for more extensive testing and use on wider range of real applications in the future
- Potential for use in parallel applications (including distributed processing)

RPS Energy Conclusions

- ACORN algorithm appears to provide a practical source of k-distributed pseudo-random numbers for any k
- Extremely simple to implement, in particular for any modulus M equal to a power of 2
- Period length is a multiple of the modulus (provided seed and modulus relatively prime) - can be increased without limit
- Sequences can be reproduced on any machine (to the full available machine precision)
- Splitting approach allows parallelisation of Monte-Carlo calculations
- ACORN algorithm gives rise to some very interesting mathematical analysis that demonstrates a priori that the sequences will have the desired properties
- Reduces the need for extensive empirical testing
- Allows test of results by repeating calculations with a different (higher order, larger modulus) ACORN sequence and comparing results

RPS Energy References

- ACORN - A New Method for Generating Sequences of Uniformly Distributed Pseudo-random Numbers, J. Comput. Phys., 83 (1989) pp16-31
- Theoretical Background for the ACORN Random Number Generator, Report AEA-APS-0244, AEA Technology, Winfrith, Dorset, UK (1992)
- Pseudo-random Number Generation for Parallel Processing - A Splitting Approach, SIAM News, 33 number 9 (2000)
- The Additive Congruential Random Number Generator - a Special Case of a Multiple Recursive Generator, J. Comput. and Appl. Mathematics, doi: 10.1016/j.cam.2007.05.018, in press (2007)
- Some Convergence Results for Additive Congruential Random Number Generators, (submitted to J. Comput. and Appl. Mathematics, July 2007)
- Empirical Testing of the Additive Congruential Random Number Generator, unpublished (submitted to J. Comput. and Appl. Mathematics, January 2008)

