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Some initial thoughts

• Consider the equation
– Some more information required – for example

• Specify ranges for indices m, n

– m = 1, 2,…, k; n = 1, 2, …

• Specify initial values Y 0
n and Y m

o; any constraints on values taken?

• Y,M are integers; any constraints on M? Or Y real, M=1?

• Is there any useful (and/or interesting) mathematics that
comes out of studying this equation?
– What exactly do we mean by useful?

• Does it arise in a real problem?

• Does studying it help us to solve any real problems?
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Outline

• Background
– Pseudo-random number generation
– Some alternative approaches to the problem

• ACORN algorithm
– Specification
– Implementation
– Mathematical and numerical analysis

• Leading to the conclusion that ACORN algorithm is practical
approach to uniform pseudo-random number generation
– Easy to implement
– Scales to any size of problem (gives uniformity in k-

dimensions, any given k; period length in excess of any given
number)

– Gives rise to some very interesting analysis and useful
mathematical results



Some background

• What is a pseudo-random sequence of numbers?
– Sequence generated from specified algorithm and initial state
– Algorithm chosen so that sequence appears random

• Difficult to identify current state precisely without exact knowledge of the sequence
• Small perturbations in current state make large difference to future evolution

• Many different mathematical and numerical problems
whose numerical solution requires a reliable source of
uniformly distributed (pseudo-)random numbers

– Monte Carlo methods, with applications including
• numerical optimisation
• numerical integration
• Bayesian inference
• geostatistical simulation, statistical physics, other statistical applications

– Games of chance (computer simulation of shuffling cards, dice,
roulette wheels, etc)

– Cryptography and related applications



Motivation

• Circa 1984, at Winfrith (with Chris Farmer)
– Developing numerical applications (in particular moving

point methods for convection-diffusion problems) which
required uniform ‘random’ distribution of points in 2D
(and ultimately 3D) grid cells

– Desire for independence from commercial software and
freedom to run on any machine

– Seeking method that was simple to implement as well
as reliable

• Problems and pitfalls
– Turned out to be a bit more complicated (and a whole lot

more interesting) than it had seemed at first sight



A cautionary tale …(1)

• Chebshev mixing method (proposed by Erber, Everett and
Johnson, J. Comput. Phys., vol 32, p168 -, 1979)
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• Superficially, appears a good source of U(0,1) numbers
– Simple, easy to implement

• BUT turns out to have undesirable qualities, making it
unsuitable as a source of random numbers
– As later pointed out by Erber et al, J. Comput. Phys., 1983



Chebyshev generator – distribution
in one and two dimensions



Analysis of Chebyshev algorithm

• Can rewrite Chebyshev generator as
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• Hence, simplifies to
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• Using exact finite precision arithmetic, with k binary digits,
sequence collapses to zero after k steps
– Only reason the generator ‘works’ at all is due to rounding

error in inverse cosine calculation



Observations

• Many different generators have been proposed over the years
which initially appeared to pass a range of empirical tests of
uniformity and randomness but which later turned out to have
serious inadequacies in certain other specific tests of randomness

• It might seem these pitfalls could be largely overcome if it were
possible to prove purely from theoretical considerations that a
particular algorithm would pass certain classes of test, without the
need for extensive empirical testing

– It would be nice to have a family of generators, defined by some
parameter, which ‘converged’ to uniform distribution (in k dimensions)
as a limiting case for that parameter

– Could then repeat calculations with different sequences (defined by
different values of the relevant parameter) and check for convergence
of the result

• eg Monte-Carlo integration in k-dimensions



A cautionary tale …(2)

• Linear congruential generator, LCG (see discussion in
Knuth, The Art of Computer Programming, Vol 2. Semi-
numerical algorithms)
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• Depends on appropriate choice of multiplier a, additive
constant c and modulus M
– For any given M only a very small proportion of choices of

multiplier give good distribution properties
– Extensive empirical testing required for each choice of M
– Often restrict to generators with constant c = 0 (multiplicative

congruential generator, MCG)
– Period length always ≤ M



MCG issues (also apply to LCG)

• With large M can get reasonable distribution properties in
moderate number of dimensions and long period

– Example: NAG routine G05CAF (modulus 259, multiplier 1313; period
length 257, provided seed is odd)

• To increase period, require increased modulus plus extensive
empirical testing of large numbers of multipliers

– No a priori way of predicting good multipliers
• For parallel processing, need much longer sequences (very large

modulus) or many different statistically independent generators
• With smaller M, serious inadequacies with distribution properties

– Many historical examples (smaller modulus) that were widely used
and later turned out to have disastrous flaws on certain problems

• eg RANDU (modulus 231, multiplier 65539, widely used in the scientific computing world
for many years) but has very poor 3-d distribution

• Might also have unforseen problems with current generators

– Some examples follow



MCG, modulus 28=256, multiplier=137,
initial value=1 (period=32)



MCG, modulus 212=4096,
multiplier=141, i.v. =1 (period=1024)



Additive congruential random
number (ACORN) generator

• ACORN generator
– Original discovery dates back to 1984/85

• Reference Wikramaratna, J. Comput. Phys., vol 83,
p16-31 (1989) and follow up papers
– Simple to implement
– Long period (≥ M; multiple of the modulus)
– Amenable to theoretical analysis
– k-th order generator approximates to k-distributed

• in the sense that it can approximate arbitrarily closely to any
specified finite number of terms from a sequence that can be
proved to be k-distributed



ACORN random number generator

• k-th order ACORN generator defined from

– an integer modulus M

– an integer seed Y0
0, (0 < Y0

0 < M)

– an arbitrary set of k integer initial values Ym
0, m = 1, ..., k,

each satisfying 0 ≤ Ym
0 < M
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Calculating ACORN variates
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Some observations

• Numbers X k
n approximate to uniformly distributed

on the unit interval in up to k dimensions
– provided a few simple constraints on initial parameter

values are satisfied,
• C1. Modulus M should to be a large integer (typically a prime

number raised to an integer power)
• C2. Seed Y0

0 and modulus should be relatively prime
• C3. Initial values Ym

0 can then be chosen arbitrarily

– Conditions C1 and C2 ensure a large period length (an
integer multiple of the modulus).



Suitable parameter choices

• Suitable parameter combinations include
– M a large prime; Y 0

0 any integer smaller than M
– M = Qr for prime Q and some integer r ; Y0

0 any integer not a
multiple of Q

– M = 230p for some (small) integer p ; Y0
0 an odd integer

• this last choice is particularly convenient, both for efficient implementation
and theoretical analysis
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Implementation of ACORN algorithm

• Simple to implement in any high-level language
– assumes that integer representation allows integers up to 231 to be

calculated and stored without overflow
– implement for modulus M=230p , integer p = 2, 3, or 4

• All computations performed in exact integer arithmetic, apart from
conversion from integer modulo M to double precision real

– identical results on any machine and/or language (to the accuracy of
the machine representation of a double precision real number).

• Examples in FORTRAN 77 - implement as a function call with
fewer than 20 lines of executable code

– Analogous implementations in both C and C++
• NAG plan to introduce ACORN algorithm in next release of their

subroutine libraries
– Version currently available for download and testing at

http://www.nag.co.uk/nagware/Examples/Acorn.asp



Example implementations in
FORTRAN 77, modulus 230 or 260

DOUBLE PRECISION FUNCTION ACORNI(XDUM)
C
C ACORN GENERATOR
C MODULUS =< 2^30, ORDER =< 12
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
PARAMETER (MAXORD=12,MAXOP1=MAXORD+1)
COMMON /IACO/ KORDEI,MAXINT,IXV(MAXOP1)
DO 7 I=1,KORDEI

IXV(I+1)=(IXV(I+1)+IXV(I))
IF (IXV(I+1).GE.MAXINT)

1 IXV(I+1)=IXV(I+1)-MAXINT
7 CONTINUE

ACORNI=(DBLE(IXV(KORDEI+1))/MAXINT
RETURN
END

• XDUM - dummy variable
• Common block IACO used to transfer data to the function
• Before first call, initialise variables in common block IACO (user must

not subsequently change any of these parameters)
– KORDEI - Order ≤ 12 (higher orders possible by increasing

parameter MAXORD)
– MAXINT - modulus for generator (≤ 230, to avoid integer overflow
– IXV(1) - seed for generator (seed non-zero and < MAXINT, relatively

prime with MAXINT; if MAXINT = 230, then IXV(1) must be odd)
– IXV(I+1), I=2,KORDEI - initial values for generator (initial values<

MAXINT)
• After initialisation, each call generates a single number between 0 and

1, returning it as the function value ACORNI.

DOUBLE PRECISION FUNCTION ACORNJ(XDUM)
C
C ACORN GENERATOR
C MODULUS =< 2^60, ORDER =< 12
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
PARAMETER (MAXORD=12,MAXOP1=MAXORD+1)
COMMON /IACO2/ KORDEJ

1 ,MAXJNT,IXV1(MAXOP1),IXV2(MAXOP1)
DO 7 I=1,KORDEJ

IXV1(I+1)=(IXV1(I+1)+IXV1(I))
IXV2(I+1)=(IXV2(I+1)+IXV2(I))
IF (IXV2(I+1).GE.MAXJNT) THEN

IXV2(I+1)=IXV2(I+1)-MAXJNT
IXV1(I+1)=IXV1(I+1)+1

ENDIF
IF (IXV1(I+1).GE.MAXJNT)

1 IXV1(I+1)=IXV1(I+1)-MAXJNT
7 CONTINUE

ACORNJ=(DBLE(IXV1(KORDEJ+1))
1 +DBLE(IXV2(KORDEJ+1))/MAXJNT)/MAXJNT
RETURN
END



Extension to larger modulus 260, 230p

• Modulus 260

– Use two integers (I1, I2), each less than 230, to represent a
single integer value I less than 260 I = (230×I1)+I2

– Given two integers I, J represented this way, it is
straightforward to do integer addition modulo 260

• Generalise to modulus 230p

– Use p integers (I1, I2,…,Ip), each less than 230, to represent a
single integer value I less than 230p

I = (230(p-1)×I1)+ (230(p-2)×I2)+…+ Ip
– Computational effort to generate each random variate

proportional to p (equivalently, proportional to log2M)
– Period length is multiple of the modulus M, as long as seed is

odd (ie as long as Ip is odd)



Computational performance (Martyn
Byng, NAG)

ACORN Generator Order 10
modulus 2^60 (p=2): 2.87s

G05CLF (modulus 2^59): 1.92s

Time to exhaust period with single processor:
ACORN modulus 2^30 ~ 0.1 to 0.8 days
ACORN modulus 2^60 ~ 0.3 to 3.5 million years

(Timings on:Windows 2000 Professional on Pentium III 600MHz processor with 128Mb memory using Compaq Visual Fortran 6 Compiler)



ACORN, modulus 28=256, order 8
(period=8x256=2024)



ACORN, modulus 212=4096, order 10
(period=8x4096; first 4096 points only)



Empirical testing

• Consider ACORN generators with modulus ≥ 260, order ≥ 10
• Have carried out wide range of tests on the ACORN generators

over many years. Some recent tests carried out include
– Testing on a Computational Physics example, ~2000

• Simulation of 2D Ising model, using cluster algorithms and in particular the Wolff
algorithm [U. Wolff, Phys. Rev. Lett., 62, 361, 1989].

• A.M. Ferrenberg, D.P. Landau and Y.J. Wong [Phys. Rev. Lett., 69, 3382, 1992]
demonstrated that a number of supposedly ‘high quality’ random number generators
produced systematically incorrect results on this problem.

• M. Luscher [Computer Physics Communications, 79, 100, 1994] has suggested that this
is a particularly sensitive test of random number generators.

• Tests reported by Ferrenberg et al and by Luscher were repeated using ACORN
algorithm as source of random numbers [U. Wolff, personal communication, 2000].

• Discrepancy between simulation results and the exact analytic solution was statistically
insignificant - ACORN generator passed this test (good LC generators also pass test)

– Application of standard empirical test suites, over last 5+ years
• Diehard – [Wikramaratna, 2008, submitted to JCAM]

– Showed that for given modulus, got more bits passing with ACORN than with LCG of same
modulus and with good choice of multiplier

– With modulus ≥ 260, order ≥ 10 get ~42 random bits (ie full double precision)
• TestU01 – [Martyn Byng,NAG, personal communication, 2008]



Theoretical analysis and results

• Main theoretical results to date
– Closed form expression for n-th term
– Periodicity (note larger than LCG with similar modulus)
– Parallelisation of Monte-Carlo calculations

• STRIDE algorithm

– Equivalence with specific multiple recursive and matrix
generators

– k-th order ACORN generator approximates to k-
distributed



Closed-form expression for n-th term
in ACORN sequence
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Period length (1989)

• Have proved that the period length of an ACORN sequence with
modulus equal to a power of two will be an integer multiple of the
modulus, provided only that the seed is chosen to be odd.

– Period length of the sequence can be increased, effectively without
limit, simply by increasing the value of the modulus by a suitable factor
and then choosing the seed to take an odd value.

– Implementation is straightforward, for arbitrarily large modulus
• Contrast with MCG/LCG for which the period length can never

exceed the modulus
– Increasing the modulus for a linear congruential generator is non-

trivial as a result of need to identify appropriate new values of the
parameters a and c in order to ensure reasonable distribution
properties in higher dimensions

– implementation of a linear congruential generator becomes
progressively more complicated with increasing modulus.



Conjecture (2007) on period length

• Let Xk
n be a k -th order ACORN generator, with modulus equal to

a prime power (M = q t, where q is a prime) and suppose the seed
and modulus are relatively prime. Then the sequence Xk

n,
k = 1, …, n will have period length equal to q iM = q i+t, where i is
the largest integer such that q i ≤ k.

• Observations
– Seed and modulus relatively prime means seed should not be a

multiple of q
– If q = 2, then condition satisfied provided only that q takes odd value
– Result holds irrespective of initial values
– Restriction on seed is necessary (consider case with seed equal to q

and all initial values zero – first order generator has period M/q
• Examples (see also next slide)

– Modulus 260, order 10 gives period 263

– Modulus 290, order 16 gives period 294



Period lengths for various moduli

qi Mqi≤k<qi+13i M3i≤k<3i+12i M2i≤k<2i+1

…………

q2Mq2≤k< q39M9≤k<274M4≤k<8

qMq≤k<q23M3≤k<92M2≤k<4

M1≤k<qM1≤k<3Mk=1

PeriodOrder kPeriodOrder kPeriodOrder k

M = qt, q prime…M = 3tM = 2t



Parallelisation of Monte-Carlo
calculations (2000)

• Approaches to parallelisation
– Parameterisation (define family of random number generators

having a parameter that can be varied between different
processors)

• Success dependant on statistical independence of the different generators
– Splitting (output from a single random number generator with

long period is split into a number of sub-streams which can
then be used either on different processors or for different
realisations of the Monte-Carlo calculation)

• If number of variates per realisation is known (or has a known bound) then
can do identical calculation on any number p of processors with speed-up
factor very close to p

• Needs efficient algorithm to take large strides (fixed length) through the
sequence of random numbers

– ‘Efficient’ means much faster than stepping through the sequence term by term
• Need very long period length (sufficient to carry out full set of realisations)



STRIDE algorithm
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• By calculating the Wm-i
n for a given value of n=s (the initialisation

step), it becomes possible to calculate strides of an arbitrary
length s through an ACORN sequence (the stride step) by making
use of this equation

– Provided only that it is possible to carry out both multiplication and
addition modulo M (note that stride step is carried out once per
realisation)

• For initialisation step, an obvious way of calculating the Wm-i
s is to

initialise an m-th order ACORN generator with seed equal to 1 and
all the initial values zero and apply the ACORN algorithm m times,
noting that in this case the Wm-i

n are precisely the Ym-i
n

– For large s, more efficient approaches to initialisation are possible
(but note that in any case the initialisation step only needs carrying out
once, or can be pre-calculated)



STRIDE algorithm (more efficient
initialisation)
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• For large n it becomes more efficient to apply an algorithm
that takes advantage of this - equivalent to taking stride
step of length j through ACORN sequence initialised with
seed W 0

j and initial values W i
j, i=1, ..., m

• Initialisation for stride length 2s can be done in time
equivalent to s ‘stride’ steps (compared with 2s ‘ACORN’
calls using original approach)

• Initialisation for any stride length between 2s and (2s+1-1)
can be done in time equivalent to at most s ‘STRIDE’ steps
and s ‘ACORN’ calls



Equivalence with multiple recursive
generators (2007) …

• Generalised MRG, order k: each variate is a linear
combination of previous k variates and a constant
– Normalise to the unit interval by dividing by M

• k-th order ACORN is equivalent to a k-th order
generalised MRG with coefficients ai

j and c where
– ai

j alternate in sign; magnitude first increases, then
decreases
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… and with matrix generators (2007)

• Generalised MRG can be re-written

– Apply k times – gives matrix equation with disjoint vectors
– This is a particular case of a matrix generator (with matrix [Gk]k)

• Can study the form of the matrices (Gk , [Gk]k, Bk), vector bk and the magnitude of the
coefficients (see paper)

• Observe in particular that Gk
-1 = Gk

R where R denotes reversing order of rows
and columns (equivalently, rotating by 180° about mid-point of matrix)
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k-distributed sequences - definitions

• A sequence (xn) is uniformly distributed modulo 1 in Rk if for all
[a,b) contained in or equal to Ik (where Ik = [0,1) is unit k-cube)

• A sequence (xn) is well distributed modulo 1 in Rk if uniformly in p
and for all [a,b) contained in or equal to Ik

• A([a,b);N,p) denotes number of points {xp+n}, 1≤n<N that lie in
[a,b) where {x} means fractional parts of x

• A([a,b);N) is defined to be equal to A([a,b);N,0)
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k-distributed property (1992)

• The k-th order ACORN random number generator
(normalised to the unit interval) is well distributed modulo 1 in
Rk, provided that the seed is irrational

– Contrast with much weaker corresponding result for LCG – can
show that a normalised LCG can be uniformly distributed (but
NOT well distributed) modulo 1 in R, and is NOT uniformly
distributed (or well distributed) modulo 1 in Rk for any k>1

• Although any practical implementation uses rational seeds,
this suggests that with large enough modulus ACORN
sequences can provide good approximation to k-distributed
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k-distributed convergence (2007)

• Given an arbitrary k -th order ACORN sequence together with
modulus M = 2m and an appropriate set of initial conditions
(including an odd value for the seed), together with a required
precision b ≤ m ; then the first M terms of the sequence are equal
(to b binary digits precision) to the first M terms of an infinite
sequence that is w.d. mod 1 in Rk.

• Given any normalised k -th order ACORN sequence together with
an appropriate set of initial conditions (in particular, with an
irrational seed χ 0

0 – which ensures that the sequence is is w.d.
mod 1 in Rk), then we can calculate the first N = 2ν terms of the
sequence to β binary digits accuracy from an ACORN sequence
with appropriate values of the modulus, seed and initial values.

• These results formalise the notion that “with large enough modulus
ACORN sequences can provide good approximation to k-
distributed”



Where Next?

• Tremendous scope for further theoretical analysis of ACORN
algorithm

– Needs a concentrated effort to see how far theory can be developed
– Limits on how fast it can be developed by one person working

occasionally in spare time
– Great opportunity to look at some very interesting applications of

mathematics, and to make a real impact
• Currently looking at applications in Monte-Carlo integration

– Identifying appropriate test examples in higher dimensions
– Comparing results with different generators
– Does ‘convergence’ property for ACORN generators give a real

practical benefit?
• Numerical Algorithms Group will include ACORN generator in next

release of NAG subroutine libraries
– Provides a focus for more extensive testing and use on wider range of

real applications in the future
– Potential for use in parallel applications (including distributed

processing)



Conclusions

• ACORN algorithm appears to provide a practical source of
k-distributed pseudo-random numbers for any k

– Extremely simple to implement, in particular for any modulus M equal
to a power of 2

– Period length is a multiple of the modulus (provided seed and modulus
relatively prime) – can be increased without limit

– Sequences can be reproduced on any machine (to the full available
machine precision)

– Splitting approach allows parallelisation of Monte-Carlo calculations
• ACORN algorithm gives rise to some very interesting

mathematical analysis that demonstrates a priori that the
sequences will have the desired properties

– Reduces the need for extensive empirical testing
– Allows test of results by repeating calculations with a different (higher

order, larger modulus) ACORN sequence and comparing results
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