

Specification, Implementation and Numerical Analysis of a *k*-Distributed Uniform Pseudo-random Number Generator (ACORN)

Roy S Wikramaratna

WikramaratnaR@rpsgroup.com

Applied Mathematics and Numerical Analysis Seminar, Reading University 22 February 2008

RPS Energy **Acknowledgements**

- Chris Farmer (Schlumberger and Oxford University)
 - Suggesting problem (1984)
 - Continuing interest in progress and results
- RPS Energy
 - Current employer
 - For giving me the time to present seminar
- Numerical Algorithms Group Ltd, Oxford
 - For challenging me to provide more conclusive demonstrations of effectiveness of ACORN algorithm
 - Special thanks to Brian Ford, Martyn Byng at NAG

RPS Energy **Some initial thoughts**

• Consider the equation $Y^m{}_n = (Y^{m-1}{}_n + Y^m{}_{n-1})_{\text{mod }M}$

Some more information required – for example

• Specify ranges for indices *m*, *n*

 $- m = 1, 2, \dots, k; n = 1, 2, \dots$

- Specify initial values Y_{n}^{0} and Y_{n}^{m} ; any constraints on values taken?
- *Y*,*M* are integers; any constraints on *M*? Or *Y* real, *M*=1?
- Is there any useful (and/or interesting) mathematics that comes out of studying this equation?
 - What exactly do we mean by useful?
 - Does it arise in a real problem?
 - Does studying it help us to solve any real problems?

- Background
 - Pseudo-random number generation
 - Some alternative approaches to the problem
- ACORN algorithm
 - Specification
 - Implementation
 - Mathematical and numerical analysis
- Leading to the conclusion that ACORN algorithm is practical approach to uniform pseudo-random number generation
 - Easy to implement
 - Scales to any size of problem (gives uniformity in *k*-dimensions, any given *k*; period length in excess of any given number)
 - Gives rise to some very interesting analysis and useful mathematical results

RPS Energy **Some background**

- What is a *pseudo-random sequence* of numbers?
 - Sequence generated from specified algorithm and initial state
 - Algorithm chosen so that sequence appears random
 - Difficult to identify current state precisely without exact knowledge of the sequence
 - Small perturbations in current state make large difference to future evolution
- Many different mathematical and numerical problems whose numerical solution requires a reliable source of uniformly distributed (pseudo-)random numbers
 - Monte Carlo methods, with applications including
 - numerical optimisation
 - numerical integration
 - Bayesian inference
 - geostatistical simulation, statistical physics, other statistical applications
 - Games of chance (computer simulation of shuffling cards, dice, roulette wheels, etc)
 - Cryptography and related applications

- Circa 1984, at Winfrith (with Chris Farmer)
 - Developing numerical applications (in particular moving point methods for convection-diffusion problems) which required uniform 'random' distribution of points in 2D (and ultimately 3D) grid cells
 - Desire for independence from commercial software and freedom to run on any machine
 - Seeking method that was simple to implement as well as reliable
- Problems and pitfalls
 - Turned out to be a bit more complicated (and a whole lot more interesting) than it had seemed at first sight

RPS Energy **A cautionary tale ...(1)**

• Chebshev mixing method (proposed by Erber, Everett and Johnson, *J. Comput. Phys.*, vol 32, p168 -, 1979)

 $Z_n = Z_{n-1}^2 - 2 \text{ where initial } Z_0 \text{ lies in the range}(0,2)$ $U_n = (1/\pi) \cos^{-1}(Z_n/2)$

- Superficially, appears a good source of U(0,1) numbers
 - Simple, easy to implement
- BUT turns out to have undesirable qualities, making it unsuitable as a source of random numbers
 - As later pointed out by Erber et al, J. Comput. Phys., 1983

RPS EnergyChebyshev generator – distributionin one and two dimensions

RPS Energy Analysis of Chebyshev algorithm

- Can rewrite Chebyshev generator as $U_{n} = (1/\pi)\cos^{-1}(Z_{n}/2) = (1/\pi)\cos^{-1}((Z_{n-1}^{2}-2)/2)$ $\cos(\pi U_{n}) = (Z_{n-1}^{2}-2)/2 = 2(Z_{n-1}/2)^{2} - 1$ $= 2\cos^{2}(\pi U_{n-1}) - 1 = \cos(2\pi U_{n-1})$
- Hence, simplifies to $U_n = 2U_{n-1}$ $U_{n-1} < 0.5$ $U_n = 2 - 2U_{n-1}$ $U_{n-1} \ge 0.5$
- Using exact finite precision arithmetic, with k binary digits, sequence collapses to zero after k steps
 - Only reason the generator 'works' at all is due to rounding error in inverse cosine calculation

RPS Energy **Observations**

- Many different generators have been proposed over the years which initially appeared to pass a range of empirical tests of uniformity and randomness but which later turned out to have serious inadequacies in certain other specific tests of randomness
- It might seem these pitfalls could be largely overcome if it were possible to prove purely from theoretical considerations that a particular algorithm would pass certain classes of test, without the need for extensive empirical testing
 - It would be nice to have a family of generators, defined by some parameter, which 'converged' to uniform distribution (in *k* dimensions) as a limiting case for that parameter
 - Could then repeat calculations with different sequences (defined by different values of the relevant parameter) and check for convergence of the result
 - eg Monte-Carlo integration in *k*-dimensions

RPS Energy **A cautionary tale ...(2)**

 Linear congruential generator, LCG (see discussion in Knuth, The Art of Computer Programming, Vol 2. Seminumerical algorithms)

$$Y_n = (aY_{n-1} + c)_{\text{mod}M} \qquad X_n = Y_n / M$$

- Depends on appropriate choice of multiplier *a*, additive constant *c* and modulus *M*
 - For any given *M* only a very small proportion of choices of multiplier give good distribution properties
 - Extensive empirical testing required for each choice of M
 - Often restrict to generators with constant *c* = 0 (multiplicative congruential generator, MCG)
 - Period length always $\leq M$

RPS Energy **MCG** issues (also apply to LCG)

- With large *M* can get reasonable distribution properties in moderate number of dimensions and long period
 - Example: NAG routine G05CAF (modulus 2⁵⁹, multiplier 13¹³; period length 2⁵⁷, provided seed is odd)
- To increase period, require increased modulus plus extensive empirical testing of large numbers of multipliers
 - No *a priori* way of predicting good multipliers
- For parallel processing, need much longer sequences (very large modulus) or many different statistically independent generators
- With smaller *M*, serious inadequacies with distribution properties
 - Many historical examples (smaller modulus) that were widely used and later turned out to have disastrous flaws on certain problems
 - eg RANDU (modulus 2³¹, multiplier 65539, widely used in the scientific computing world for many years) but has very poor 3-d distribution
 - Might also have unforseen problems with current generators
 - Some examples follow

RPS Energy **MCG, modulus 2⁸=256, multiplier=137, initial value=1 (period=32)**

Linear Congruential Generator

Linear Congruential Generator

RPS Energy MCG, modulus 2¹²=4096, multiplier=141, i.v. =1 (period=1024)

Linear Congruential Generator

Linear Congruential Generator

RPS Energy Additive congruential random number (ACORN) generator

- ACORN generator
 - Original discovery dates back to 1984/85
- Reference Wikramaratna, J. Comput. Phys., vol 83, p16-31 (1989) and follow up papers
 - Simple to implement
 - Long period ($\geq M$; multiple of the modulus)
 - Amenable to theoretical analysis
 - *k*-th order generator approximates to *k*-distributed
 - in the sense that it can approximate arbitrarily closely to any specified finite number of terms from a sequence that can be proved to be *k*-distributed

RPS Energy **ACORN random number generator**

- *k*-th order ACORN generator defined from
 - an integer modulus M
 - an integer seed Y_0^0 , $(0 < Y_0^0 < M)$
 - an arbitrary set of *k* integer initial values Y_{0}^{m} , m = 1, ..., k, each satisfying $0 \le Y_{0}^{m} < M$

$$Y^{0}{}_{n} = Y^{0}{}_{n-1} \qquad n \ge 1$$

$$Y^{m}{}_{n} = (Y^{m-1}{}_{n} + Y^{m}{}_{n-1})_{\text{mod}M} \quad n \ge 1, m = 1, ..., k$$

$$X^{k}{}_{n} = Y^{k}{}_{n} / M \qquad n \ge 1$$

RPS Energy **Calculating ACORN variates**

RPS Energy **Some observations**

- Numbers X^k_n approximate to uniformly distributed on the unit interval in up to k dimensions
 - provided a few simple constraints on initial parameter values are satisfied,
 - C1. Modulus *M* should to be a large integer (typically a prime number raised to an integer power)
 - C2. Seed Y_0^0 and modulus should be relatively prime
 - C3. Initial values Y_{0}^{m} can then be chosen arbitrarily
 - Conditions C1 and C2 ensure a large period length (an integer multiple of the modulus).

RPS Energy **Suitable parameter choices**

$$Y_{n}^{0} = Y_{n-1}^{0} \qquad n \ge 1$$

$$Y_{n}^{m} = (Y_{n-1}^{m-1} + Y_{n-1}^{m})_{\text{mod }M} \quad n \ge 1, m = 1, ..., k$$

$$X_{n}^{k} = Y_{n}^{k} / M \qquad n \ge 1$$

- Suitable parameter combinations include
 - *M* a large prime; Y_0^0 any integer smaller than *M*
 - $M = Q^r$ for prime Q and some integer r; Y_0^0 any integer not a multiple of Q
 - $M = 2^{30p}$ for some (small) integer p; Y_0^0 an odd integer
 - this last choice is particularly convenient, both for efficient implementation and theoretical analysis

RPS Energy Implementation of ACORN algorithm

- Simple to implement in any high-level language
 - assumes that integer representation allows integers up to 2³¹ to be calculated and stored without overflow
 - implement for modulus $M=2^{30p}$, integer p = 2, 3, or 4
- All computations performed in exact integer arithmetic, apart from conversion from integer modulo *M* to double precision real
 - identical results on any machine and/or language (to the accuracy of the machine representation of a double precision real number).
- Examples in FORTRAN 77 implement as a function call with fewer than 20 lines of executable code
 - Analogous implementations in both C and C++
- NAG plan to introduce ACORN algorithm in next release of their subroutine libraries
 - Version currently available for download and testing at http://www.nag.co.uk/nagware/Examples/Acorn.asp

RPS EnergyExample implementations inFORTRAN 77, modulus 230 or 260

С

С

С

С

DOUBLE PRECISION FUNCTION ACORNI (XDUM)

```
C ACORN GENERATOR
```

```
C MODULUS = < 2^{30}, ORDER = < 12
```

```
С
```

1

```
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
PARAMETER (MAXORD=12,MAXOP1=MAXORD+1)
COMMON /IACO/ KORDEI,MAXINT,IXV(MAXOP1)
DO 7 I=1,KORDEI
IXV(I+1)=(IXV(I+1)+IXV(I))
IF (IXV(I+1).GE.MAXINT)
IXV(I+1)=IXV(I+1)-MAXINT
```

```
7 CONTINUE
ACORNI=(DBLE(IXV(KORDEI+1))/MAXINT
RETURN
END
```

- XDUM dummy variable
- Common block IACO used to transfer data to the function
- Before first call, initialise variables in common block IACO (user must not subsequently change any of these parameters)
 - KORDEI Order ≤ 12 (higher orders possible by increasing parameter MAXORD)
 - MAXINT modulus for generator ($\leq 2^{30}$, to avoid integer overflow
 - IXV(1) seed for generator (seed non-zero and < MAXINT, relatively prime with MAXINT; if MAXINT = 2³⁰, then IXV(1) must be odd)
 - IXV(I+1), I=2,KORDEI initial values for generator (initial values
 MAXINT)
- After initialisation, each call generates a single number between 0 and 1, returning it as the function value ACORNI.

```
DOUBLE PRECISION FUNCTION ACORNJ (XDUM)
       ACORN GENERATOR
       MODULUS =< 2^{60}, ORDER =< 12
  IMPLICIT DOUBLE PRECISION (A-H, O-Z)
  PARAMETER (MAXORD=12, MAXOP1=MAXORD+1)
  COMMON /IACO2/ KORDEJ
      , MAXJNT, IXV1 (MAXOP1), IXV2 (MAXOP1)
 1
  DO 7 I=1,KORDEJ
    IXV1(I+1) = (IXV1(I+1) + IXV1(I))
    IXV2(I+1) = (IXV2(I+1) + IXV2(I))
    IF (IXV2(I+1).GE.MAXJNT) THEN
      IXV2(I+1) = IXV2(I+1) - MAXJNT
      IXV1(I+1)=IXV1(I+1)+1
    ENDIF
  IF (IXV1(I+1).GE.MAXJNT)
 1
          IXV1(I+1) = IXV1(I+1) - MAXJNT
7 CONTINUE
  ACORNJ=(DBLE(IXV1(KORDEJ+1))
     +DBLE (IXV2 (KORDEJ+1)) /MAXJNT) /MAXJNT
 1
  RETURN
  END
```


RPS Energy **Extension to larger modulus 2**⁶⁰, **2**³⁰*p*

- Modulus 2⁶⁰
 - Use two integers (I_1, I_2) , each less than 2^{30} , to represent a single integer value I less than 2^{60} I = $(2^{30} \times I_1) + I_2$
 - Given two integers I, J represented this way, it is straightforward to do integer addition modulo 2⁶⁰
- Generalise to modulus 2^{30p}
 - Use *p* integers $(I_1, I_2, ..., I_p)$, each less than 2³⁰, to represent a single integer value I less than 2³⁰*p*

 $| = (2^{30(p-1)} \times |_1) + (2^{30(p-2)} \times |_2) + \ldots + |_p$

- Computational effort to generate each random variate proportional to p (equivalently, proportional to $\log_2 M$)
- Period length is multiple of the modulus M, as long as seed is odd (ie as long as I_p is odd)

RPS Energy **Computational performance (Martyn Byng, NAG)**

Time to exhaust period with single processor: ACORN modulus $2^{30} \sim 0.1$ to 0.8 days ACORN modulus $2^{60} \sim 0.3$ to 3.5 million years

Timing Comparisons ACORN Generators (Modulus 2^30p, different p) and NAG LCG (G05CLF)

(Timings on: Windows 2000 Professional on Pentium III 600MHz processor with 128Mb memory using Compaq Visual Fortran 6 Compiler)

RPS EnergyACORN, modulus 28=256, order 8(period=8x256=2024)

RPS EnergyACORN, modulus 212=4096, order 10
(period=8x4096; first 4096 points only)

RPS Energy **Empirical testing**

- Consider ACORN generators with modulus $\geq 2^{60}$, order ≥ 10
- Have carried out wide range of tests on the ACORN generators over many years. Some recent tests carried out include
 - Testing on a Computational Physics example, ~2000
 - Simulation of 2D Ising model, using cluster algorithms and in particular the Wolff algorithm [U. Wolff, Phys. Rev. Lett., 62, 361, 1989].
 - A.M. Ferrenberg, D.P. Landau and Y.J. Wong [Phys. Rev. Lett., 69, 3382, 1992] demonstrated that a number of supposedly 'high quality' random number generators produced systematically incorrect results on this problem.
 - M. Luscher [Computer Physics Communications, 79, 100, 1994] has suggested that this is a particularly sensitive test of random number generators.
 - Tests reported by Ferrenberg et al and by Luscher were repeated using ACORN algorithm as source of random numbers [U. Wolff, personal communication, 2000].
 - Discrepancy between simulation results and the exact analytic solution was statistically insignificant ACORN generator passed this test (good LC generators also pass test)
 - Application of standard empirical test suites, over last 5+ years
 - Diehard [Wikramaratna, 2008, submitted to JCAM]
 - Showed that for given modulus, got more bits passing with ACORN than with LCG of same modulus and with good choice of multiplier
 - With modulus $\ge 2^{60}$, order ≥ 10 get ~42 random bits (ie full double precision)
 - TestU01 [Martyn Byng,NAG, personal communication, 2008]

RPS Energy **Theoretical analysis and results**

- Main theoretical results to date
 - Closed form expression for *n*-th term
 - Periodicity (note larger than LCG with similar modulus)
 - Parallelisation of Monte-Carlo calculations
 - STRIDE algorithm
 - Equivalence with specific multiple recursive and matrix generators
 - k-th order ACORN generator approximates to kdistributed

RPS EnergyClosed-form expression for *n*-th termin ACORN sequence

Define Z^m as follows

 $Z^{0}_{n} = 1 \qquad Z^{1}_{n} = n \qquad Z^{2}_{n} = \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ $Z^{3}_{n} = \sum_{i=1}^{n} \frac{i(i+1)}{2} = \frac{n(n+1)(n+2)}{3!} \qquad \dots \qquad Z^{m}_{n} = \frac{(n+m-1)!}{(n-1)!m!}$

Leads to the following closed form expression for Y^m_n

 $Y^{m}{}_{n} = \left(\sum_{i=0}^{m} Y^{i}{}_{0}Z^{m-i}{}_{n}\right)_{\text{mod}M} \quad \text{where} \quad Z^{m-i}{}_{n} = \frac{(n+m-i-1)!}{(n-1)!(m-i)!}$

RPS Energy **Period length (1989)**

- Have proved that the period length of an ACORN sequence with modulus equal to a power of two will be an integer multiple of the modulus, provided only that the seed is chosen to be odd.
 - Period length of the sequence can be increased, effectively without limit, simply by increasing the value of the modulus by a suitable factor and then choosing the seed to take an odd value.
 - Implementation is straightforward, for arbitrarily large modulus
- Contrast with MCG/LCG for which the period length can never exceed the modulus
 - Increasing the modulus for a linear congruential generator is nontrivial as a result of need to identify appropriate new values of the parameters *a* and *c* in order to ensure reasonable distribution properties in higher dimensions
 - implementation of a linear congruential generator becomes progressively more complicated with increasing modulus.

RPS Energy **Conjecture (2007) on period length**

- Let X_n^k be a k-th order ACORN generator, with modulus equal to a prime power ($M = q^t$, where q is a prime) and suppose the seed and modulus are relatively prime. Then the sequence X_n^k , k = 1, ..., n will have period length equal to $q^iM = q^{i+t}$, where i is the largest integer such that $q^i \le k$.
- Observations
 - Seed and modulus relatively prime means seed should not be a multiple of *q*
 - If q = 2, then condition satisfied provided only that q takes odd value
 - Result holds irrespective of initial values
 - Restriction on seed is necessary (consider case with seed equal to *q* and all initial values zero first order generator has period *M/q*
- Examples (see also next slide)
 - Modulus 2^{60} , order 10 gives period 2^{63}
 - Modulus 2⁹⁰, order 16 gives period 2⁹⁴

RPS Energy **Period lengths for various moduli**

$M = 2^t$		$M = 3^t$			$M = q^t, q$ prime	
Order <i>k</i>	Period	Order <i>k</i>	Period		Order <i>k</i>	Period
<i>k</i> =1	М	1≤ <i>k</i> <3	М	-	1≤ <i>k</i> <q< td=""><td>М</td></q<>	М
2≤ <i>k</i> <4	2М	3≤ <i>k</i> <9	ЗМ		q≤k <q<sup>²</q<sup>	qM
4≤ <i>k</i> <8	4 <i>M</i>	9≤ <i>k</i> <27	9 <i>M</i>		q²≤k< q³	q ² M
•••		•••				
2 ⁱ ≤k<2 ⁱ⁺¹	2 ⁱ M	3 ⁱ ≤k<3 ⁱ⁺¹	3 [′] M		q ⁱ ≤k <q<sup>i+1</q<sup>	q ['] M

RPS Energy **Parallelisation of Monte-Carlo calculations (2000)**

- Approaches to parallelisation
 - Parameterisation (define family of random number generators having a parameter that can be varied between different processors)
 - Success dependant on statistical independence of the different generators
 - Splitting (output from a single random number generator with long period is split into a number of sub-streams which can then be used either on different processors or for different realisations of the Monte-Carlo calculation)
 - If number of variates per realisation is known (or has a known bound) then can do identical calculation on any number p of processors with speed-up factor very close to p
 - Needs efficient algorithm to take large strides (fixed length) through the sequence of random numbers
 - 'Efficient' means much faster than stepping through the sequence term by term
 - Need very long period length (sufficient to carry out full set of realisations)

RPS Energy **STRIDE** algorithm

Write
$$Y^{m}_{j+n} = \left(\sum_{i=0}^{m} Y^{i}_{j} W^{m-i}_{n}\right)_{\text{mod}M}$$
 where $W^{m-i}_{n} = \left(Z^{m-i}_{n}\right)_{\text{mod}M}$

- By calculating the W^{m-i}_n for a given value of n=s (the initialisation step), it becomes possible to calculate strides of an arbitrary length s through an ACORN sequence (the stride step) by making use of this equation
 - Provided only that it is possible to carry out both multiplication and addition modulo *M* (note that stride step is carried out once per realisation)
- For initialisation step, an obvious way of calculating the $W^{m-i}{}_{s}$ is to initialise an *m*-th order ACORN generator with seed equal to 1 and all the initial values zero and apply the ACORN algorithm *m* times, noting that in this case the $W^{m-i}{}_{n}$ are precisely the $Y^{m-i}{}_{n}$
 - For large s, more efficient approaches to initialisation are possible (but note that in any case the initialisation step only needs carrying out once, or can be pre-calculated)

RPS Energy **STRIDE algorithm (more efficient initialisation)**

Observe that
$$W^{m}_{2j} = \left(\sum_{i=0}^{m} W^{i}_{j} W^{m-i}_{j}\right)_{\text{mod}M}$$

- For large *n* it becomes more efficient to apply an algorithm that takes advantage of this - equivalent to taking stride step of length *j* through ACORN sequence initialised with seed W⁰_i and initial values Wⁱ_j, *i*=1, ..., m
- Initialisation for stride length 2^s can be done in time equivalent to s 'stride' steps (compared with 2^s 'ACORN' calls using original approach)
- Initialisation for any stride length between 2^s and (2^{s+1}-1) can be done in time equivalent to at most s 'STRIDE' steps and s 'ACORN' calls

RPS Energy **Equivalence with multiple recursive** generators (2007) ...

- Generalised MRG, order k: each variate is a linear combination of previous k variates and a constant
 - Normalise to the unit interval by dividing by M

$$y_{j} = (a_{1}y_{j-1} + a_{2}y_{j-2} + \dots + a_{k}y_{j-k} + c)_{\text{mod}M} \qquad x_{j} = y_{j} / M$$

- k-th order ACORN is equivalent to a k-th order generalised MRG with coefficients aⁱ, and c where
 - $-a_{j}^{i}$ alternate in sign; magnitude first increases, then decreases

$$a_{i} = \left((-1)^{i+1} \frac{k!}{(k-i)!i!} \right)_{\text{mod}M} \quad i = 1, \dots, k; \qquad c = Y^{0}_{0}$$

RPS Energy ... and with matrix generators (2007)

Generalised MRG can be re-written

$$\begin{pmatrix} y_{j-k+1} \\ y_{j-k+2} \\ \vdots \\ y_{j-1} \\ y_j \end{pmatrix} = \begin{bmatrix} 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & \ddots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ a_k & a_{k-1} & \cdots & a_2 & a_1 \end{bmatrix} \begin{pmatrix} y_{j-k} \\ y_{j-k+1} \\ \vdots \\ y_{j-2} \\ y_{j-1} \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ c \end{bmatrix}_{\text{mod}M}$$

$$\mathbf{y}_j = \left(\mathbf{G}_k \mathbf{y}_{j-1} + \mathbf{c} \right)_{\text{mod}M}$$

$$\mathbf{y}_j = \left(\left[\mathbf{G}_k \right]^k \mathbf{y}_{j-k} + \left(\left[\mathbf{G}_k \right]^{k-1} + \dots + \left[\mathbf{G}_k \right]^1 + \left[\mathbf{I}_k \right] \right] \mathbf{c} \right)_{\text{mod}M}$$

$$= \left(\left[\mathbf{G}_k \right]^k \mathbf{y}_{j-k} + \left[\mathbf{B}_k \right] \mathbf{c} \right)_{\text{mod}M} = \left(\left[\mathbf{G}_k \right]^k \mathbf{y}_{j-k} + \mathbf{b}_k c \right)_{\text{mod}M}$$

- Apply k times gives matrix equation with <u>disjoint</u> vectors
- This is a particular case of a <u>matrix generator</u> (with matrix $[\mathbf{G}_k]^k$)
 - Can study the form of the matrices (G_k, [G_k]^k, B_k), vector b_k and the magnitude of the coefficients (see paper)
 - Observe in particular that $\mathbf{G}_{k}^{-1} = \mathbf{G}_{k}^{R}$ where ^R denotes reversing order of rows and columns (equivalently, rotating by 180° about mid-point of matrix)

RPS Energy *k*-distributed sequences - definitions

- A sequence (\mathbf{x}_n) is uniformly distributed modulo 1 in \mathbb{R}^k if for all $[\mathbf{a}, \mathbf{b})$ contained in or equal to \mathbb{Y}^k (where $\mathbb{Y}^k = [\mathbf{0}, \mathbf{1})$ is unit *k*-cube) $\lim_{N \to \infty} \frac{A([a, b); N))}{N} = \prod_{i=1}^k (b_i - a_i)$
- A sequence (x_n) is well distributed modulo 1 in R^k if uniformly in p and for all [a,b) contained in or equal to I^k

$$\lim_{N \to \infty} \frac{A([a,b);N,p)}{N} = \prod_{j=1}^{k} (b_j - a_j)$$

- A([a,b);N,p) denotes number of points {x_{p+n}}, 1≤n<N that lie in [a,b) where {x} means fractional parts of x
- $A([\mathbf{a},\mathbf{b});N)$ is defined to be equal to $A([\mathbf{a},\mathbf{b});N,0)$

RPS Energy *k*-distributed property (1992)

Normalised form of ACORN generator:

 $X^{n}_{n} = X^{n}_{n-1} \qquad n \ge 1$ $X^{m}_{n} = (X^{m-1}_{n} + X^{m}_{n-1})_{\text{mod}1} \quad n \ge 1, m = 1, \dots, k$

- The *k*-th order ACORN random number generator (normalised to the unit interval) is well distributed modulo 1 in ^{Rk}, provided that the seed is irrational
 - Contrast with much weaker corresponding result for LCG can show that a normalised LCG can be uniformly distributed (but NOT well distributed) modulo 1 in [®], and is NOT uniformly distributed (or well distributed) modulo 1 in [®] for any *k*>1
- Although any practical implementation uses rational seeds, this suggests that with large enough modulus ACORN sequences can provide good approximation to *k*-distributed

RPS Energy *k*-distributed convergence (2007)

- Given an arbitrary k -th order ACORN sequence together with modulus M = 2^m and an appropriate set of initial conditions (including an odd value for the seed), together with a required precision b ≤ m; then the first M terms of the sequence are equal (to b binary digits precision) to the first M terms of an infinite sequence that is w.d. mod 1 in ℜ^k.
- Given any normalised *k* -th order ACORN sequence together with an appropriate set of initial conditions (in particular, with an irrational seed χ_0^0 – which ensures that the sequence is is w.d. mod 1 in \Re^k), then we can calculate the first $N = 2^{\nu}$ terms of the sequence to β binary digits accuracy from an ACORN sequence with appropriate values of the modulus, seed and initial values.
- These results formalise the notion that "with large enough modulus ACORN sequences can provide good approximation to kdistributed"

RPS Energy Where Next?

- Tremendous scope for further theoretical analysis of ACORN algorithm
 - Needs a concentrated effort to see how far theory can be developed
 - Limits on how fast it can be developed by one person working occasionally in spare time
 - Great opportunity to look at some very interesting applications of mathematics, and to make a real impact
- Currently looking at applications in Monte-Carlo integration
 - Identifying appropriate test examples in higher dimensions
 - Comparing results with different generators
 - Does 'convergence' property for ACORN generators give a real practical benefit?
- Numerical Algorithms Group will include ACORN generator in next release of NAG subroutine libraries
 - Provides a focus for more extensive testing and use on wider range of real applications in the future
 - Potential for use in parallel applications (including distributed processing)

- ACORN algorithm appears to provide a practical source of k-distributed pseudo-random numbers for any k
 - Extremely simple to implement, in particular for any modulus *M* equal to a power of 2
 - Period length is a multiple of the modulus (provided seed and modulus relatively prime) can be increased without limit
 - Sequences can be reproduced on any machine (to the full available machine precision)
 - Splitting approach allows parallelisation of Monte-Carlo calculations
- ACORN algorithm gives rise to some very interesting mathematical analysis that demonstrates a priori that the sequences will have the desired properties
 - Reduces the need for extensive empirical testing
 - Allows test of results by repeating calculations with a different (higher order, larger modulus) ACORN sequence and comparing results

- ACORN A New Method for Generating Sequences of Uniformly Distributed Pseudo-random Numbers, *J. Comput. Phys.*, 83 (1989) pp16-31
- Theoretical Background for the ACORN Random Number Generator, Report AEA-APS-0244, AEA Technology, Winfrith, Dorset, UK (1992)
- Pseudo-random Number Generation for Parallel Processing A Splitting Approach, SIAM News, 33 number 9 (2000)
- The Additive Congruential Random Number Generator a Special Case of a Multiple Recursive Generator, *J. Comput. and Appl. Mathematics*, doi: 10.1016/j.cam.2007.05.018, in press (2007)
- Some Convergence Results for Additive Congruential Random Number Generators, (submitted to *J. Comput. and Appl. Mathematics*, July 2007)
- Empirical Testing of the Additive Congruential Random Number Generator, unpublished (submitted to *J. Comput. and Appl. Mathematics*, January 2008)